Skip to main content

Role of a conserved pseudouridine in U2 snRNA on the structural and electrostatic features of the spliceosomal pre-mRNA branch site

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

  • 1304 Accesses

Abstract

A pseudouridine (ψ) residue in a phylogenetically conserved position of U2 snRNA that pairs with the intron to form the pre-mRNA branch site helix of S. Cerevisiae has been shown to induce a dramatically altered architectural landscape compared with that of its unmodified counterpart. In the y-dependent structure the branch site adenosine in an extrahelical position, with the nucleophilic 2’OH positioned at the surface of the widened major groove. Clustering of electronegative functional groups and kinking of the backbone in the modified structure also result in a region of exceptional negativity in the region of the 2’OH. These features may assist in recognition and activity of the branch site during the first step of splicing. This is the first case in which a native y has been shown to induce a major alteration in structure. However, it is likely that other conserved modification sites in the spliceosome and ribosome may impact structurally on assembly and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Arnez J, Steitz T (1994) Crystal structure of unmodified tRNAGln complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 30:7560-7567

    Google Scholar 

  • 2. Auffinger P, Westhof E (1998) Effects of pseudouridylation in tRNA hydration and dynamics; a theoretical approach. In: Grosjean H, Benne R (eds) Modification and Editing of RNA. ASM Press, Washington DC, pp 103-112

    Google Scholar 

  • 3. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M, Yonath A (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11:91-102

    Article  Google Scholar 

  • 4. Berglund JA, Rosbash M, Schultz SC (2001) Crystal structure of a model branchpoint U2 snRNA duplex containing bulged adenosines. RNA 7:682-691

    Article  Google Scholar 

  • 5. Borer PN, Lin Y, Wang S, Roggenbuck MW, Gott JM, Uhlenbeck OC, Pelczer I (1995) Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry 34:6488-6503

    Google Scholar 

  • 6. Brünger AT (1996) X-PLOR Version 3.851: A System for Crystallography and NMR, Yale University Press, New Haven

    Google Scholar 

  • 7. Charette M, Gray MW (2000 Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341-351

    Google Scholar 

  • 8. Chou SH, Chin KH (2001) Novel cross-strand three-purine stack of the highly conserved 5’-GAAAG-5’ internal loop at the 3’-end termini of Parvovirus genomes. J Biomol NMR 21:307-319

    Article  Google Scholar 

  • 9. Chui HM-P, Desaulniers J-P, Scaringe SA, Chow CS (2002) Synthesis of helix 69 of Escherichia coli 23S rRNA containing its natural modified nucleosides, m3y and y. J Org Chem 67:8847-8854

    Article  Google Scholar 

  • 10. Davis D, Poulter C (1991) 1H-15N NMR studies of Escherichia coli tRNAphe from hisT mutants: A structural role for pseudouridine. Biochemistry 30:4223-4231

    Google Scholar 

  • 11. Derrick WB, Horowitz J (1993) Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA: evidence for stable base modification-dependent conformers. Nucleic Acids Res 21:4948-4953

    Google Scholar 

  • 12. Desaulniers J-P, Ksebati B, Chow CS (2003) Synthesis of 15N-enriched pseudouridine derivatives. Org Lett 5:4093-4096

    Article  Google Scholar 

  • 13. Durant P, Davis D (1999) Stabilization of the anticodon stem-loop of the tRNALys by an A+-C basepair and by pseudouridine. J Mol Biol 285:115-131

    Article  Google Scholar 

  • 14. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH ((1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373-9377

    Google Scholar 

  • 15. Greenbaum NL, Radhakrishnan I, Patel DJ, Hirsh D (1996) Solution structure of the donor site of a trans-splicing RNA. Structure 4:725-733

    Article  Google Scholar 

  • 16. Gu J, Patton J, Shimba S, Reddy R (1996) Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA 2:909-918

    Google Scholar 

  • 17. Hall K, McLaughlin L (1991) Properties of a U1/mRNA 5’ splice site duplex containing pseudouridine as measured by thermodynamic and NMR methods. Biochemistry 30:1795-1801

    Google Scholar 

  • 18. Hwang T-L, Mori S, Shaka AJ, van Zijl PCM (1997) Application of phase-modulated CLEAN chemical exchange spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOES. J Am Chem Soc 119:6203-6204

    Article  Google Scholar 

  • 19. Jucker FM, Heus HA, Yip PF, Moors EHM, Pardi A (1996) A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol 264:968-980

    Article  Google Scholar 

  • 20. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425-435

    Article  Google Scholar 

  • 21. Kitamura A, Muto Y, Watanabe S, Kim I, Ito T, Nishiya Y, Sakamoto K, Ohtsuki T, Kawai G, Watanabe K, Hosono K, Takaku H, Katoh E, Yamazaki T, Inoue T, Yokoyama S (2002) Solution structure of an RNA fragment with the P7/P9.0 region and the 3’-terminal guanosine of the Tetrahymena group I intron. RNA 8:440-451

    Article  Google Scholar 

  • 22. Kowalak JA, Dalluge JJ, McCloskey JA, Stetter KO (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33:7869-7876

    Google Scholar 

  • 23. Lane BG (1998) Historical perspectives on RNA nucleoside modification. In: (Grosjean H, Benne R (eds) Modification and Editing of RNA. ASM Press, Washington DC, pp 1-20

    Google Scholar 

  • 24. Lynch SR, Puglisi JD (2001) Structure of a eukaryotic decoding region A-site. J Mol Biol 306:1023-1035

    Article  Google Scholar 

  • 25. Madhani HD, Guthrie C (1994) A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Annu Rev Genet 28:1-26

    Article  Google Scholar 

  • 26. Maiväli Ü, Remme J (2004) Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA 10:600-604

    Article  Google Scholar 

  • 27. Massenet S, Branlant C (1999) A limited number of pseudouridine residues in the human atac spliceosomal U snRNAs as compared to human major spliceosomal U snRNAs. RNA 5:1495-1503

    Article  Google Scholar 

  • 28. Massenet S, Motorin Y, Lafontaine D, Hurt E, Grosjean H, Branlant C (1999) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol 19:2142-2154

    Google Scholar 

  • 29. Meroueh M, Grohar PJ, Qiu J, Santa Lucia J, Scaringe SA, Chow CS (2000) Nucl Acids Res 28:2075-2083

    Article  Google Scholar 

  • 30. Moore M, Query C, Sharp P (1993) Splicing of precursors to mRNA by the spliceosome. In: Gesteland RF, Atkins JF (eds) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 303-357

    Google Scholar 

  • 31. Newby MI, Greenbaum NL (2001) A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch site architecture. RNA 7:833-845

    Article  Google Scholar 

  • 32. Newby MI, Greenbaum NL (2002a) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nat Struct Biol 9:958-965

    Article  Google Scholar 

  • 33. Newby MI, Greenbaum NL (2002b) Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc Natl Acad Sci 99:12697-12702

    Article  Google Scholar 

  • 34. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci 98:4899-4903

    Article  Google Scholar 

  • 35. Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Camp M, Jean-Charles S, Peil L, Kaya Y (2001) Pseudouridines and pseudouridine synthases of the ribosome. Cold Spring Harb Symp Quant Biol 66:147-159

    Article  Google Scholar 

  • 36. Patton J, Jacobsen M, Pederson T (1994) Pseudouridine formation in U2 small nuclear RNA. Proc Natl Acad Sci USA 91:3324-3328

    Google Scholar 

  • 37. Patton JR, Padgett RW (2003) Caenorhabditis elegans pseudouridine synthase 1 activity in vivo: tRNA is a substrate, but not U2 small nuclear RNA. Biochem J 372:595-602

    Article  Google Scholar 

  • 38. Query C, Strobel S, Sharp P (1996) Three recognition events at the branch-site adenine. EMBO J 15:1392-1402

    Google Scholar 

  • 39. Rachofsky EL, Osman R, Ross JBA (2001) Probing structure and dynamics of DNA with 2-aminopurine. Biochemistry 40:946-956

    Article  Google Scholar 

  • 40. Reddy R, Busch H (1988) Small nuclear RNAs: RNA sequences, structure, and modifications. From Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles. In: Birnstiel ML (ed) Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles. Springer-Verlag Press, Berlin, pp 1-37

    Google Scholar 

  • 41. Rice LM, Brünger AT (1994) Torsion angle dynamics - reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19:277-290

    Google Scholar 

  • 42. Smirnov S, Matray TJ, Kool ET, de los Santos C (2002) Integrity of duplex structures without hydrogen bonding: DNA with pyrene paired at abasic sites. Nucleic Acids Res 30:5561-5569

    Article  Google Scholar 

  • 43. Smith JS, Nikonowicz EP (1998) NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Biochemistry 37:13486-13498

    Article  Google Scholar 

  • 44. Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, van Heel M (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol 9:849-854

    Google Scholar 

  • 45. Stein EG, Rice LM, Brünger AT (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Res 124:154-164

    Article  Google Scholar 

  • 46. Valadkhan S, Manley JM (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413:701-707

    Google Scholar 

  • 47. Valadkhan S, Manley JM (2003) Characterization of the catalytic activity of U2 and U6 snRNAs. RNA 9:892-904

    Article  Google Scholar 

  • 48. Yarian CS, Basti MM, Cain RJ, Ansari G, Guenther RH, Sochacka E, Czerwinska G,

    Google Scholar 

  • 49. Malkiewicz A, Agris PF (1999) Structural and functional roles of the N1- and N3-protons of y at tRNA’s position 39. Nucleic Acids Res 27:3543-3549

    Article  Google Scholar 

  • 50. Xu D, Greenbaum NL, Fenley MO (2005) Recognition of the spliceosomal branch site RNA helix on the basis of surface and electrostatic features. Nucleic Acids Res, in press

    Google Scholar 

  • 51. Yu Y-T, Shu M-D, Steitz JA (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 17:5783-5795

    Article  Google Scholar 

  • 52. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883-896

    Article  Google Scholar 

  • 53. Zagorowska I, Adamiak RW (1996) 2-Aminopurine labeled RNA bulge loops: synthesis and thermodynamics. Biochimie 78:123-130

    Article  Google Scholar 

  • 54. Zhang L, Doudna JA (2002) Structural insights into Group II intron catalysis and branch-site selection. Science 295:2084-2087

    Article  Google Scholar 

  • 55. Zhao X, Yu YT (2004a) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA 10:681-690

    Article  Google Scholar 

  • 56. Zhao X, Yu YT (2004b) Detection and quantitation of RNA base modifications. RNA 6:996-1002

    Article  Google Scholar 

  • 57. Znosko BM, Burkard ME, Krugh TR, Turner DH (2002) Molecular recognition in purine-rich internal loops: thermodynamic, structural, and dynamic consequences of purine for adenine substitution in 5’(rGGCAAGCCU)2. Biochemistry 41:14978-14987

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Greenbaum .

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Greenbaum, N.L. Role of a conserved pseudouridine in U2 snRNA on the structural and electrostatic features of the spliceosomal pre-mRNA branch site. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106846

Download citation

Publish with us

Policies and ethics