Skip to main content
Log in

Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

SiC-0–8wt% Si3N4 and SiC-0–10 wt% TiN ceramics were fabricated via pressureless solid-state sintering using B4C and C as sintering aids. Si3N4 and TiN addition up to 4 and 1 wt%, respectively exhibited ˃ 97% relative density. Thermal decomposition of nitrides and subsequent N2 evolution during sintering resulted in the low relative densities at the high levels of nitride content. This study demonstrated that 0.5–1 wt% nitride addition led to three orders of magnitude increase (105 → 108 cm−3) in carrier density due to nitride-derived N-doping in SiC lattice and, consequently an order of magnitude decrease (107 → 106 Ω∙cm) in the electrical resistivity. An increased thermal resistance at SiC-nitride heterogeneous grain boundaries was responsible for ⁓ 32% decrease in thermal conductivity with 1 wt% nitride addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Prochazka, in Sintering of silicon carbide, ed. By A.R. Cooper, A.H. Heuer. (Springer, Boston, 1975), p. 421–431

  2. S. Prochazka, R.M. Scanlan, Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 58, 72 (1975)

    Article  CAS  Google Scholar 

  3. Y.W. Kim, R. Malik, in SiC ceramics, structure, processing, and properties. ed. by M. Pomeroy (Elsevier, Amsterdam, 2020), pp. 150–164

    Google Scholar 

  4. Y.W. Kim, Y.H. Kim, K.J. Kim, Electrical properties of liquid-phase sintered silicon carbide ceramics: a review. Crit. Rev. Solid State Mater. Sci. 45, 66–84 (2020)

    Article  CAS  Google Scholar 

  5. T. Maity, Y.W. Kim, High-temperature strength of liquid-phase-sintered silicon carbide ceramics: a review. Int. J. Appl. Ceram. Technol. 19, 130–148 (2022)

    Article  CAS  Google Scholar 

  6. H. Wu, Y. Yan, G. Liu, X. Liu, Y. Zhu, Z. Huang, D. Jiang, Y. Li, Effects of grain grading on microstructures and mechanical behaviors of pressureless solid-state-sintered SiC. Int. J. Appl. Ceram. Technol. 12, 976–984 (2015)

    Article  CAS  Google Scholar 

  7. K. Raju, D.H. Yoon, Sintering additives for SiC based on the reactivity: a review. Ceram. Int. 42, 17947–17962 (2016)

    Article  CAS  Google Scholar 

  8. A. Noviyanto, D.H. Yoon, Y.H. Han, T. Nishimura, Effect of sintering atmosphere on the grain growth and hardness of SiC/polysilazane ceramic composites. Adv. Appl. Ceram. 115, 272–275 (2016)

    Article  CAS  Google Scholar 

  9. R.H. Ryu, K.S. Lee, Y.W. Kim, Indentation and contact damages on grain boundary controlled silicon carbide ceramics. J. Mater. Sci. 44, 1416–1420 (2009)

    Article  CAS  Google Scholar 

  10. S.M. Lee, T.W. Kim, H.J. Lim, C. Kim, Y.W. Kim, K.S. Lee, Mechanical properties and contact damages of nanostructured silicon carbide ceramics. J. Ceram. Soc. Jpn. 115, 304–309 (2007)

    Article  CAS  Google Scholar 

  11. W.D.G. Boecker, L.N. Hailey, C.H. McMurtry, Sintered silicon carbide ceramic body of high electrical resistivity. United States patent 4701427, 20 (1985)

    Google Scholar 

  12. G. Magnani, G. Beltrami, G.L. Minoccari, L. Pilotti, Presureless sintering and properties of α-SiC-B4C composite. J. Eur. Ceram. Soc. 21, 633–638 (2001)

    Article  CAS  Google Scholar 

  13. Y. Chen, L. Jiang, X. Jia, Properties of pressureless sintered SiC-TiB2 composites. Adv. Mater. Res. 177, 369–372 (2011)

    Article  CAS  Google Scholar 

  14. Y. Li, J. Yin, H. Wu, P. Lu, Y. Yan, X. Liu, Z. Huang, D. Jiang, High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources. J. Eur. Ceram. Soc. 34, 2591–2595 (2014)

    Article  CAS  Google Scholar 

  15. G. Magnani, A. Brentari, E. Burresi, G. Raiteri, Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method. Ceram. Int. 40, 1759–1763 (2014)

    Article  CAS  Google Scholar 

  16. Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li, X. Guo, S. Ai, Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics. Ceram. Int. 41, 13547–13552 (2015)

    Article  CAS  Google Scholar 

  17. N. Cai, D. Guo, G. Wu, F. Xie, S. Tan, N. Jiang, H. Li, Decreasing resistivity of silicon carbide ceramics by incorporation of graphene. Materials 13, 3586 (2020)

    Article  CAS  Google Scholar 

  18. R. Malik, Y.W. Kim, Effect of initial α-phase content on properties of pressureless solid-state sintered SiC ceramics. Int. J. Appl. Ceram. Technol. (2021). https://doi.org/10.1111/ijac.13892

    Article  Google Scholar 

  19. T.Y. Cho, R. Malik, Y.W. Kim, K.J. Kim, Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites. J. Eur. Ceram. Soc. 38, 3064–3072 (2018)

    Article  CAS  Google Scholar 

  20. R. Malik, H.M. Kim, Y.W. Kim, K.J. Kim, Grain-growth-induced high electrical conductivity in SiC–BN composites. Ceram. Int. 44, 16394–16399 (2018)

    Article  CAS  Google Scholar 

  21. H.J. Yeom, Y.W. Kim, K.J. Kim, Electrical, thermal, and mechanical properties of silicon carbide-silicon nitride composites sintered with yttria and scandia. J. Eur. Ceram. Soc. 35, 77–86 (2015)

    Article  CAS  Google Scholar 

  22. S.H. Jang, Y.W. Kim, K.J. Kim, Electrical and thermal properties of SiC-Zr2CN composites sintered with Y2O3-Sc2O3 additives. J. Eur. Ceram. Soc. 37, 477–484 (2017)

    Article  CAS  Google Scholar 

  23. K.J. Kim, Y.W. Kim, K.Y. Lim, T. Nishimura, E. Narimatsu, Electrical and thermal properties of SiC-AlN ceramics without sintering additives. J. Eur. Ceram. Soc. 35, 2715–2721 (2015)

    Article  CAS  Google Scholar 

  24. Y.W. Kim, T.Y. Cho, K.J. Kim, Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria. J. Eur. Ceram. Soc. 5, 4137–4142 (2015)

    Article  Google Scholar 

  25. Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Effect of B doping on electrical and thermal properties of SiC bodies fabricated by spark plasma sintering. Mater. Today: Proc. 16, 211–215 (2019)

    CAS  Google Scholar 

  26. R. Malik, Y.W. Kim, Effect of AlN addition on the electrical resistivity of pressureless sintered SiC ceramics with B4C and C. J. Am. Ceram. Soc. 104, 6086–6091 (2021)

    Article  CAS  Google Scholar 

  27. R. Malik, Y.W. Kim, Pressureless solid-state sintering of SiC ceramics with BN and C additives. J. Asian Ceram. Soc. 9, 1165–1172 (2021)

    Article  Google Scholar 

  28. Z.A. Yasar, R.A. Haber, Effect of carbon addition and mixture method on the microstructure and mechanical properties of silicon carbide. Materials 13, 3768 (2020)

    Article  CAS  Google Scholar 

  29. H.D. Batha, E.D. Whitney, Kinetics and mechanism of thermal decomposition of Si3N4. J. Am. Ceram. Soc. 56, 365–369 (1973)

    Article  CAS  Google Scholar 

  30. M.W. Chase, C.A. Davies, I.R. Downey, A.J. Frurip, R.A. McDonald, A.N. Syverud, JANAF thermochemical tables—third edition. J. Phys. Chem. Ref. Data. 14, 1 (1985)

    Article  CAS  Google Scholar 

  31. R. Hamminger, Carbon inclusions in sintered silicon carbide. J. Am. Ceram. Soc. 72, 1741–1744 (1989)

    Article  CAS  Google Scholar 

  32. H. Tanaka, N. Hirosaki, T. Nishimura, D.W. Shin, S.S. Park, Nonequiaxial grain growth and polytype transformation of sintered α-silicon carbide and β-silicon carbide. J. Am. Ceram. Soc. 86, 2222–2224 (2003)

    Article  CAS  Google Scholar 

  33. S.A. Reshanov, I.I. Parfenova, V.P. Rastegaev, Group III-V impurities in β-SiC: lattice distortions and solubility. Diamond Relat. Mater. 10, 1278–1282 (2001)

    Article  CAS  Google Scholar 

  34. Azo materials, Silicon nitride properties and applications. (2021). https://www.azom.com/properties.aspx?ArticleID=53. Accessed 30 Oct 2021

  35. Enigmatics, CVD of titanium nitride and other barrier metals. (2021). http://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/films/TiN.html. Accessed 30 Oct 2021

Download references

Acknowledgements

This work was supported by the World Class 300 Project (R&D) (P0013001, Development of Localization Technology for Pressureless Sintered, Electrical Resistivity Controlled (0.1~30 Ω‧cm) 10 nm Semiconductor-grade New-SiC without Free-Si, and CVD-SiC coated New-SiC) of the MOTIE, MSS (Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Wook Kim.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, R., Kim, YW. Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics. J. Korean Ceram. Soc. 59, 589–594 (2022). https://doi.org/10.1007/s43207-022-00190-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00190-4

Keywords

Navigation