Skip to main content
Log in

Challenges and Emerging Trends for Machine Reading of the Mind from Facial Expressions

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Facial emotion recognition (FER) has garnered substantial attention in computer vision and machine learning domains due to its versatile applications. Nonetheless, achieving accurate recognition of facial expressions presents significant challenges. In this paper, we embark on a thorough investigation of FER methodologies, encompassing classical and handcrafted approaches as well as advanced deep learning architectures. Then, we comprehensively analyze the encountered challenges in FER, encompassing contextual and psychological challenges, technical challenges, and ethical considerations. By carefully identifying the research gaps arising from these challenges, we present a rigorous review of emerging trends in FER, focusing on recent studies that address these challenges. In delving into these partially explored fields, our aim is to present a comprehensive overview of pertinent research endeavors aimed at addressing challenges in FER. Additionally, we seek to shed light on areas that still remain unexplored and require further investigation. The analyzed emerging trends encompass context-aware models, exploration of spatial-temporal information, and the application of emerging data augmentation techniques, among others. Furthermore, we discuss advancements in feature extraction techniques and provide insightful recommendations for future research directions. This comprehensive examination aims to enhance the understanding of FER and facilitate the development of more robust and accurate facial emotion recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

For all the data described in this review paper, we have provided references to the original dataset sources. Please note that the availability of these datasets may be subject to certain restrictions or usage terms imposed by the original data providers.

References

  1. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). 2005. pp. 886–93. https://ieeexplore.ieee.org/document/1467360.

  2. Dahmane M, Meunier J. Emotion recognition using dynamic grid-based hog features. In: IEEE Xplore. 2011. pp. 884–8.

  3. Julina JKJ, Sharmila TS. Facial recognition using histogram of gradients and support vector machines. In: International conference on computer, communication, and signal processing: special focus on IoT, ICCCSP 2017. 2017. pp. 3–7.

  4. Li X-y, Lin Z-x. Face recognition based on HOG and fast PCA algorithm. In: Proceedings of the fourth Euro-China conference on intelligent data analysis and applications. 2018. pp. 10–22. https://doi.org/10.1007/978-3-319-68527-4.

  5. Rekha N, Kurian MZ. Face detection in real time based on HOG. IJARCET. 2014;3(4):1345–52.

    Google Scholar 

  6. Shu C, Ding X, Fang C. Histogram of the oriented gradient for face recognition. Tsinghua Sci Technol. 2011;16(2):216–24.

    Article  Google Scholar 

  7. Chen J, Chen Z, Chi Z, Fu H. Facial expression recognition based on facial components detection and HOG features. In: Scientific cooperations international workshops on electrical and computer engineering subfields, Istanbul/Turkey. 2014. pp. 64–9.

  8. Kumar P, Happy SL, Routray A. A real-time robust facial expression recognition system using HOG features. In: International conference on computing, analytics and security trends (CAST). 2016. pp. 289–93.

  9. Gabor D. Theory of communication. Part 1: the analysis of information. J Inst Electr Eng Part III Radio Commun Eng. 1946;93(26):429–41.

    Google Scholar 

  10. Lajevardi SM, Lech M. Averaged gabor filter features for facial expression recognition. In: Proceedings—digital image computing: techniques and applications, DICTA 2008. 2008. pp. 71–6.

  11. Ahsan T, Jabid T, Chong UP. Facial expression recognition using local transitional pattern on gabor filtered facial images. IETE Tech Rev (Institution of Electronics and Telecommunication Engineers, India). 2013;30(1):47–52.

    Google Scholar 

  12. Sisodia P, Verma A, Kansal S. Human facial expression recognition using gabor filter bank with minimum number of feature vectors. Int J Appl Inf Syst. 2013;5(9):9–13.

    Google Scholar 

  13. Verma K, Khunteta A. Facial expression recognition using gabor filter and multi-layer artificial neural network. 2017;24(9):1–5.

    Google Scholar 

  14. Ou J, Bai X-B, Pei Y, Ma L, Liu W. Automatic facial expression recognition using gabor filter and expression analysis. In: 2010 second international conference on computer modeling and simulation. 2010. pp. 215–8. http://ieeexplore.ieee.org/document/5421091/.

  15. Harit A, Joshi JC, Gupta KK. Facial emotions recognition using gabor transform and facial animation parameters with neural networks. IOP Conf Ser Mater Sci Eng 331(1) (2018).

  16. Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 1996;29(1):51–9.

    Article  Google Scholar 

  17. Feng X, Pietikäinen M, Hadid A. Facial expression recognition based on local binary patterns. Pattern Recognit Image Anal. 2007;17(4):592–8.

    Article  Google Scholar 

  18. Tejinkar B, Patil SD. Local binary pattern based facial expression recognition using support vector machine. Int J Eng Sci. 2018;7(8):43–9.

    Google Scholar 

  19. Chitra N, Nijhawan G. Facial expression recognition using local binary pattern and support vector machine. Int J Innov Res Adv Eng. 2016;3(06):103–8.

    Google Scholar 

  20. Panchal G, Pushpalatha KN. A local binary pattern based facial expression recognition using k-nearest neighbor (KNN) search. Int J Eng Res. 2017;6(05):525–30.

    Google Scholar 

  21. Ahmed F, Bari H, Hossain E. Person-independent facial expression recognition based on compound local binary pattern (CLBP). Int Arab J Inf Technol. 2014;11(2):195–203.

    Google Scholar 

  22. Ekweariri AN, Yurtkan K. Facial expression recognition using enhanced local binary patterns. In: Proceedings—9th international conference on computational intelligence and communication networks, CICN 2017, vol. 2018. New York: IEEE; 2018, pp. 43–7.

  23. Reddy KS. A new approach for facial expression recognition using non-uniform local binary patterns. 2018;7(3):20–9.

    Google Scholar 

  24. Lowe DG. Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision. New York: IEEE; 1999.

  25. Berretti S, Bimbo AD, Pala P. A set of selected sift features for 3d facial expression recognition. In: 2010 international conference on pattern recognition. New York: IEEE; 2010. pp. 1–4.

  26. Tang H, Huang MH-JTH. Non-frontal view facial expression recognition based on ergodic hidden Markov model supervectors. In: 2010 IEEE international conference on multimedia and expo. New York: IEEE; 2010. pp. 1202–7.

  27. Soyel H, Demirel H. Facial expression recognition based on discriminative scale invariant feature transform. IET Digit Libr. 2010;46(5):4–5.

    Google Scholar 

  28. Hu Y, Zeng Z, Yin L, Wei X, Zhou X, Huang TS. Multi-view facial expression recognition university of Illinois at Urbana–Champaign State University of New York at Binghamton. In: 2008 8th IEEE international conference on automatic face and gesture recognition. New York: IEEE; 2008. pp. 3–8.

  29. Zhang T, Zheng W, Cui Z, Zong Y, Yan J, Yan K. A deep neural network driven feature learning method for multi-view facial expression. IEEE Trans Multimedia. 2016;9210(12):1–10.

    Google Scholar 

  30. Connie T, Al-shabi M, Cheah WP, Goh M. Facial expression recognition using a hybrid CNN–SIFT aggregator, vol. 10607. Berlin: Springer; 2017. pp. 139–49.

  31. Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. In: Lecture notes in computer science, vol. 1407. Berlin: Springer; 1998. pp. 484–98.

  32. Cho K-S, Kim Y-g, Lee Y-b. Real-time expression recognition system using active appearance model and EFM. In: 2006 international conference on computational intelligence and security. New York: IEEE; 2006. pp. 747–50.

  33. Choi H-c, Oh S-y. Realtime facial expression recognition using active appearance model and multilayer perceptron. In: 2006 SICE-ICASE international joint conference. New York: IEEE; 2006. pp. 5924–7.

  34. Martin C, Werner U, Gross H-m. A real-time facial expression recognition system based on active appearance models using gray images and edge images. In: 2008 8th IEEE international conference on automatic face and gesture recognition. New York: IEEE; 2008. pp. 1–6.

  35. Ashraf AB, Lucey S, Cohn JF, Chen T, Ambadar Z, Prkachin KM, Solomon PE. The painful face—pain expression recognition using active appearance models. Image Vis Comput. 2009;27(12):1788–96.

    Article  Google Scholar 

  36. Sujono A, Gunawan AS. Face expression detection on kinect using active appearance model and fuzzy logic. In: 2016 international conference on advanced computer science and information systems (ICACSIS). New York: IEEE; 2016. pp. 439–45.

  37. Silva FAM, Pedrini H. Geometrical features and active appearance applied to facial expression recognition. 2016;16(4):1–17.

    Google Scholar 

  38. Liliana DY, Widyanto MR, Basaruddin T. Human emotion recognition based on active appearance model and semi-supervised fuzzy c-means. In: 2016 international conference on advanced computer science and information systems (ICACSIS). New York: IEEE; 2016. pp. 439–45.

  39. Barsoum E, Zhang C, Ferrer CC, Zhang Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM international conference on multimodal interaction. 2016. pp. 279–83.

  40. Liu M, Li S, Shan S, Chen X. Au-aware deep networks for facial expression recognition. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). New York: IEEE; 2013. p. 1–6.

  41. Li S, Deng W. Deep emotion transfer network for cross-database facial expression recognition. In: 2018 26th international conference on pattern recognition (ICPR). New York: IEEE; 2018. p. 3092–9.

  42. She W, Lv Z, Taoi J, Liu B, Niu M. Micro-expression recognition based on multiple aggregation networks. In: Proc. Asia–Pacific signal informat. process. assoc. annu. summit conf. 2020. pp. 1043–7.

  43. Wang L, Jia J, Mao N. Micro-expression recognition based on 2d–3d CNN. In: Proc. 39th Chin. control conf. 2020. pp. 3152–7.

  44. Liong S, Gan Y, See J, Khor H, Huang Y. Shallow triple stream three-dimensional CNN (STSTNET) for micro-expression recognition. In: Proc. IEEE 14th int. conf. autom. face gesture recognit. 2019. pp. 1–5.

  45. Wu C, Guo F. TSNN: three-stream combining 2d and 3d convolutional neural network for micro-expression recognition. IEEJ Trans Elect Electron Eng. 2021;16(1):98–107.

    Article  Google Scholar 

  46. Verma M, Vipparthi SK, Singh G. Affectivenet: affective-motion feature learning for micro expression recognition. IEEE MultiMedia. 2020;28(1):17–27.

    Article  Google Scholar 

  47. Kumar AJR, Bhanu B. Micro-expression classification based on landmark relations with graph attention convolutional network. In: Proc. IEEE/CVF conf. comput. vis. pattern recognit. workshops. 2021. pp. 1511–20.

  48. Lo L, Xie H-X, Shuai H-H, Cheng W-H. MER-GCN: micro-expression recognition based on relation modeling with graph convolutional networks. In: Proc. conf. multimedia informat. process. retrieval. 2020. pp. 79–84.

  49. Li J, Wang Y, See J, Liu W. Micro-expression recognition based on 3d flow convolutional neural network. Pattern Anal Appl. 2019;22(4):1331–9.

    Article  MathSciNet  Google Scholar 

  50. Yao L, Xiao X, Cao R, Chen F, Chen T. Three stream 3d CNN with SE block for micro-expression recognition. In: Proc. int. conf. comput. eng. appl. 2020. pp. 439–43.

  51. Yan H, Li L. Micro-expression recognition using enriched two stream 3d convolutional network. In: Proc. 4th int. conf. comput. sci. appl. eng. 2020. pp. 1–5.

  52. Lv Y, Feng Z, Xu C. Facial expression recognition via deep learning. In: 2014 international conference on smart computing (SMARTCOMP). New York: IEEE; 2014. pp. 303–8.

  53. Rifai S, Bengio Y, Courville A, Vincent P, Mirza M. Disentangling factors of variation for facial expression recognition. In: European conference on computer vision. Berlin: Springer; 2012. pp. 808–22.

  54. Liu M, Li S, Shan S, Chen X. Au-inspired deep networks for facial expression feature learning. Neurocomputing. 2015;159:126–36.

    Article  Google Scholar 

  55. Liu P, Han S, Meng Z, Tong Y. Facial expression recognition via a boosted deep belief network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. pp. 1805–12.

  56. Reed S, Sohn K, Zhang Y, Lee H. Learning to disentangle factors of variation with manifold interaction. In: International conference on machine learning. 2014. pp. 1431–9.

  57. Devries T, Biswaranjan K, Taylor GW. Multi-task learning of facial landmarks and expression. In: 2014 Canadian conference on computer and robot vision (CRV). New York: IEEE; 2014. pp. 98–103.

  58. Pons G, Masip D. Multi-task and multi-label and multi-domain learning with residual convolutional networks for emotion recognition. 2018. arXiv preprint arXiv:1802.06664.

  59. Ekman P, Rosenberg EL. What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS). Oxford: Oxford University Press; 1997.

  60. Meng Z, Liu P, Cai J, Han S, Tong Y. Identity-aware convolutional neural network for facial expression recognition. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017). New York: IEEE; 2017. pp. 558–65.

  61. Zhang K, Huang Y, Du Y, Wang L. Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans Image Process. 2017;26(9):4193–203.

    Article  MathSciNet  Google Scholar 

  62. Ranjan R, Sankaranarayanan S, Castillo CD, Chellappa R. An all-in-one convolutional neural network for face analysis. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017). New York: IEEE; 2017. pp. 17–24.

  63. Jang Y, Gunes H, Patras I. Smilenet: Registration-free smiling face detection in the wild. In: Proceedings of the IEEE international conference on computer vision. 2017. pp. 1581–9.

  64. Pu X, Fan K, Chen X, Ji L, Zhou Z. Facial expression recognition from image sequences using twofold random forest classifier. Neurocomputing. 2015;168:1173–80.

    Article  Google Scholar 

  65. Wang Y, Li Y, Song Y, Rong X. Facial expression recognition based on random forest and convolutional neural network. Information. 2019. https://doi.org/10.3390/info10120375.

    Article  Google Scholar 

  66. Elmadhoun A, Nordin MJ. Facial expression recognition using uniform local binary pattern with improved firefly feature selection. ARO. 2018;6(1):23–32.

    Article  Google Scholar 

  67. Abdulrahman M, Eleyan A. Facial expression recognition using support vector machines. In: 2015 23nd signal processing and communications applications conference (SIU). 2015. pp. 276–9.

  68. Kauser N, Sharma J. Facial expression recognition using IBP template of facial parts and multilayer neural network. In: 2017 international conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017. pp. 445–9.

  69. Niu B, Gao Z, Guo B. Facial expression recognition with LBP and ORB features. Comput Intell Neurosci. 2021;2021:8828245. https://doi.org/10.1155/2021/8828245.

    Article  Google Scholar 

  70. Cohn JF. Foundations of human computing: facial expression and emotion. In: Proceedings of the 8th international conference on multimodal interfaces. ICMI ’06, pp. 233–8. New York: Association for Computing Machinery (2006). https://doi.org/10.1145/1180995.1181043.

  71. Sato W, Hyniewska S, Minemoto K, Yoshikawa S. Facial expressions of basic emotions in Japanese laypeople. Front Psychol. 2019. https://doi.org/10.3389/fpsyg.2019.00259.

    Article  Google Scholar 

  72. Buck R, Miller RE, Caul WF. Sex, personality, and physiological variables in the communication of affect via facial expression. J Pers Soc Psychol. 1974;30(4):587–96. https://doi.org/10.1037/h0037041.

    Article  Google Scholar 

  73. Guo G, Guo R, Li X. Facial expression recognition influenced by human aging. IEEE Trans Affect Comput. 2013;4(3):291–8. https://doi.org/10.1109/T-AFFC.2013.13.

    Article  Google Scholar 

  74. Ebner N, Johnson M. Young and older emotional faces: are there age-group differences in expression identification and memory? Emotion. 2009;9(3):329–39.

    Article  Google Scholar 

  75. Ebner N, Johnson M. Age-group differences in interference from young and older emotional faces. Cogn Emot. 2010;24(7):1095–116.

    Article  Google Scholar 

  76. Bisogni C, Castiglione A, Hossain S, Narducci F, Umer S. Impact of deep learning approaches on facial expression recognition in healthcare industries. IEEE Trans Ind Inform. 2022;18(8):5619–27. https://doi.org/10.1109/TII.2022.3141400.

    Article  Google Scholar 

  77. Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I. The extended Cohn–Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE computer society conference on computer vision and pattern recognition—workshops. 2010. pp. 94–101. https://doi.org/10.1109/CVPRW.2010.5543262.

  78. Dhall A, Goecke R, Joshi J, Sikka K, Gedeon T. Emotion recognition in the wild challenge 2014: baseline, data and protocol. In: Int conference on multimodal interaction. 2014. pp. 461–6.

  79. Liu M, Li S, Shan S, Chen X. Au-aware deep networks for facial expression recognition. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). 2013. pp. 1–6. https://doi.org/10.1109/FG.2013.6553734.

  80. Mollahosseini A, Chan D, Mahoor MH. Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE winter conference on applications of computer vision (WACV). 2016. pp. 1–10. https://doi.org/10.1109/WACV.2016.7477450.

  81. Li S, Deng W. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition. IEEE Trans Image Process. 2019;28(1):356–70. https://doi.org/10.1109/TIP.2018.2868382.

    Article  MathSciNet  Google Scholar 

  82. Sedenberg E, Chuang J. Smile for the camera: privacy and policy implications of emotion AI. 2017. https://doi.org/10.48550/ARXIV.1709.00396.

  83. Tellamekala MK, Sumer O, Schuller BW, André E, Giesbrecht T, Valstar M. Are 3d face shapes expressive enough for recognising continuous emotions and action unit intensities? IEEE Trans Affect Comput. 2023. https://doi.org/10.1109/TAFFC.2023.3280530.

    Article  Google Scholar 

  84. Chen W, Zhang D, Li M, Lee D-J. STCAM: spatial-temporal and channel attention module for dynamic facial expression recognition. IEEE Trans Affect Comput. 2023;14(1):800–10. https://doi.org/10.1109/TAFFC.2020.3027340.

    Article  Google Scholar 

  85. Cai L, Li H, Dong W, Fang H. Micro-expression recognition using 3d densenet fused squeeze-and-excitation networks. Appl Soft Comput. 2022. https://doi.org/10.1016/j.asoc.2022.108594.

    Article  Google Scholar 

  86. Zhao R, Liu T, Huang Z, Lun DPK, Lam K-M. Geometry-aware facial expression recognition via attentive graph convolutional networks. IEEE Trans Affect Comput. 2023;14(2):1159–74. https://doi.org/10.1109/TAFFC.2021.3088895.

    Article  Google Scholar 

  87. Jiang J, Deng W. Disentangling identity and pose for facial expression recognition. IEEE Trans Affect Comput. 2022;13(4):1868–78. https://doi.org/10.1109/TAFFC.2022.3197761.

    Article  Google Scholar 

  88. Sima Y, Yi J, Chen A, Jin Z. Automatic expression recognition of face image sequence based on key-frame generation and differential emotion feature. Appl Soft Comput. 2021. https://doi.org/10.1016/j.asoc.2021.108029.

    Article  Google Scholar 

  89. Lo L, Ruan B-K, Shuai H-H, Cheng W-H. Modeling uncertainty for low-resolution facial expression recognition. IEEE Trans Affect Comput. 2023. https://doi.org/10.1109/TAFFC.2023.3264719.

    Article  Google Scholar 

  90. Tellamekala MK, Giesbrecht T, Valstar M. Dimensional affect uncertainty modelling for apparent personality recognition. IEEE Trans Affect Comput. 2022;13(4):2144–55. https://doi.org/10.1109/TAFFC.2022.3189974.

    Article  Google Scholar 

  91. Wang K, Peng X, Yang J, Meng D, Qiao Y. Region attention networks for pose and occlusion robust facial expression recognition. IEEE Trans Image Process. 2020;29:4057–69. https://doi.org/10.1109/TIP.2019.2956143.

    Article  Google Scholar 

  92. Li Y, Zeng J, Shan S, Chen X. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Trans Image Process. 2019;28(5):2439–50. https://doi.org/10.1109/TIP.2018.2886767.

    Article  MathSciNet  Google Scholar 

  93. Huang T-R, Hsu S-M, Fu L-C. Data augmentation via face morphing for recognizing intensities of facial emotions. IEEE Trans Affect Comput. 2023;14(2):1228–35. https://doi.org/10.1109/TAFFC.2021.3096922.

    Article  Google Scholar 

  94. Psaroudakis A, Kollias D. Mixaugment and mixup: augmentation methods for facial expression recognition. In: 2022 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). 2022. pp. 2366–74.

  95. Trimech IH, Maalej A, Ben Amara NE. Data augmentation using non-rigid CPD registration for 3d facial expression recognition. In: 2019 16th international multi-conference on systems, signals and devices (SSD). 2019. pp. 164–9. https://doi.org/10.1109/SSD.2019.8893278.

  96. Yi W, Sun Y, He S. Data augmentation using conditional GANs for facial emotion recognition. In: 2018 progress in electromagnetics research symposium (PIERS-Toyama). 2018. pp. 710–4. https://doi.org/10.23919/PIERS.2018.8598226.

  97. Zhu X, Liu Y, Li J, Wan T, Qin Z. Emotion classification with data augmentation using generative adversarial networks. In: Phung D, Tseng VS, Webb GI, Ho B, Ganji M, Rashidi L, editors. Advances in knowledge discovery and data mining. Cham: Springer; 2018. pp. 349–60.

  98. Belmonte R, Allaert B, Tirilly P, Bilasco IM, Djeraba C, Sebe N. Impact of facial landmark localization on facial expression recognition. IEEE Trans Affect Comput. 2023;14(2):1267–79. https://doi.org/10.1109/TAFFC.2021.3124142.

    Article  Google Scholar 

  99. Gupta P. MERASTC: micro-expression recognition using effective feature encodings and 2d convolutional neural network. IEEE Trans Affect Comput. 2023;14(2):1431–41. https://doi.org/10.1109/TAFFC.2021.3061967.

    Article  Google Scholar 

  100. Li Y, Lu G, Li J, Zhang Z, Zhang D. Facial expression recognition in the wild using multi-level features and attention mechanisms. IEEE Trans Affect Comput. 2023;14(1):451–62. https://doi.org/10.1109/TAFFC.2020.3031602.

    Article  Google Scholar 

  101. Li Y, Wang S, Zhao Y, Ji Q. Simultaneous facial feature tracking and facial expression recognition. IEEE Trans Image Process. 2013;22(7):2559–73. https://doi.org/10.1109/TIP.2013.2253477.

    Article  Google Scholar 

  102. Xie Y, Tian W, Zhang H, Ma T. Facial expression recognition through multi-level features extraction and fusion. Soft Comput. 2023. https://doi.org/10.1007/s00500-023-08531-z.

    Article  Google Scholar 

  103. Xiao J, Gan C, Zhu Q, Zhu Y, Liu G. CFNet: facial expression recognition via constraint fusion under multi-task joint learning network. Appl Soft Comput. 2023. https://doi.org/10.1016/j.asoc.2023.110312.

    Article  Google Scholar 

  104. Ghazouani H. A genetic programming-based feature selection and fusion for facial expression recognition. Appl Soft Comput. 2021. https://doi.org/10.1016/j.asoc.2021.107173.

    Article  Google Scholar 

  105. Barman A, Dutta P. Facial expression recognition using distance and texture signature relevant features. Appl Soft Comput. 2019;77:88–105. https://doi.org/10.1016/j.asoc.2019.01.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haythem Ghazouani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, H. Challenges and Emerging Trends for Machine Reading of the Mind from Facial Expressions. SN COMPUT. SCI. 5, 103 (2024). https://doi.org/10.1007/s42979-023-02447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02447-z

Keywords

Navigation