Skip to main content
Log in

A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this study, we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian. By utilizing non-uniform grids, it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest. Overall, our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No data was used in this manuscript.

References

  1. Albuquerque-Ferreira, A.C., Ribeiro, P.M.V.: Reduced-order strategy for meshless solution of plate bending problems with the generalized finite difference method. Latin American Journal of Solids and Structures 16(01), 1–21 (2019). https://doi.org/10.1590/1679-78255191

  2. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. In: Lecture Notes of the Unione Matematica Italiana. Springer, Cham (2016)

  3. Caputo, M.C., Torres, D.F.M.: Duality for the left and right fractional derivatives. Signal Process. 107, 265–271 (2015)

    Article  Google Scholar 

  4. Cheng, J.: On multivariate fractional Taylor’s and Cauchy’s mean value theorem. J. Math. Study 52, 38–52 (2019)

    Article  MathSciNet  Google Scholar 

  5. Collatz, L.: The Numerical Treatment of Differential Equations. Springer-Verlag, Berlin (1960)

    Book  Google Scholar 

  6. Daoud, M., Laamri, E.H.: Fractional Laplacians: a short survey. Discrete Contin. Dyn. Syst. Ser. 15(1), 95–116 (2022). https://doi.org/10.3934/dcdss.2021027

    Article  MathSciNet  Google Scholar 

  7. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  8. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Computational Methods in Applied Mechanics and Engineering 194(6), 743–773 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905–1914 (2010)

    Article  MathSciNet  Google Scholar 

  10. Forsythe, G.E., Wasow, W.R.: Finite Difference Methods for Partial Differential Equations. Wiley, New York (1960)

    Google Scholar 

  11. García, A., Negreanu, M., Ureña, F., Vargas, A.M.: A note on a meshless method for fractional Laplacian at arbitrary irregular meshes. Mathematics 9(9), 2843 (2021). https://doi.org/10.3390/math9222843

    Article  Google Scholar 

  12. Gavete, L., Ureña, F., Benito, J.J., García, A., Ureña, M., Salete, E.: Solving second order non-linear elliptic partial differential equations using generalized finite difference method. J. Comput. Appl. Math. 318, 378–387 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hu, Y., Li, C., Li, H.: The finite difference method for Caputo-type parabolic equation with fractional Laplacian: one-dimension case. Chaos, Solitons & Fractals 102, 319–326 (2017)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Oberman, A.M.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jensen, P.S.: Finite difference technique for variable grids. Comput. Struct. 2, 17–29 (1972)

    Article  Google Scholar 

  16. Lancaster, P., Salkauskas, K.: Curve and Surface Fitting. Academic Press, New York (1986)

    Google Scholar 

  17. Levin, D.: The approximation power of moving least squares. Math. Comput. 67(224), 1517–1531 (1998)

    Article  MathSciNet  Google Scholar 

  18. Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 83–95 (1980)

    Article  MathSciNet  Google Scholar 

  19. Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  Google Scholar 

  20. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2019)

    MathSciNet  Google Scholar 

  21. Perrone, N., Kao, R.: A general finite difference method for arbitrary meshes. Comput. Struct. 5, 45–58 (1975)

    Article  MathSciNet  Google Scholar 

  22. Del Teso, F.: Finite difference method for a fractional porous medium equation. Calcolo 51, 615–638 (2014)

  23. Ureña, F., Gavete, L., García, A., Benito, J.J., Vargas, A.M.: Non-linear Fokker-Planck equation solved with generalized finite differences in 2D and 3D. Appl. Math. Comput. 368, 124801 (2020)

    MathSciNet  Google Scholar 

  24. Usero, D.: Fractional Taylor Series for Caputo Fractional Derivatives. Construction of Numerical Schemes. Universidad Complutense de Madrid, Spain, Department of Applied Mathematics (2008)

    Google Scholar 

  25. Vargas, A.M.: Finite difference method for solving fractional differential equations at irregular meshes. Math. Comput. Simul. 193, 204–216 (2022)

    Article  MathSciNet  Google Scholar 

  26. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885 (2014)

    MathSciNet  Google Scholar 

  27. Vázquez, J.L.: The Mathematical Theories of Diffusion. Nonlinear and Fractional Diffusion. Springer Lecture Notes in Mathematics, CIME Subseries (2017)

    Book  Google Scholar 

  28. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The author is supported by the Spanish MINECO through Juan de la Cierva fellow-ship FJC2021-046953-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vargas.

Ethics declarations

Conflict of Interest

The author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, A.M. A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00323-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00323-4

Keywords

Mathematics Subject Classification

Navigation