Skip to main content
Log in

Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Low-cost and high-performance UV photodetector (PD) based on anatase titanium dioxide (TiO2) and nitrogen-doped graphene quantum dots (N-GQDs) bilayer heterojunction were fabricated on a commercial SiO2/Si substrate by drop-casting the N-GQDs solution on the surface of anatase TiO2 thin film, which was initially prepared by thermally oxidizing a DC-sputtered titanium (Ti) film in air. The anatase TiO2 and N-GQDs films were characterized with several techniques in order to study their structure and morphology properties. XRD, XPS, and AFM revealed that the phase of the as-sputtered Ti film transformed to a highly crystalline pure anatase TiO2 film when thermally oxidized at 600 °C in air. In addition, TEM, HRTEM, and FTIR revealed that the N-GQDs are highly crystalline and narrowly distributed in size. Furthermore, the optical and UV light harvesting properties of photodetectors based on pure anatase TiO2 film (without N-GQDs) and anatase TiO2 (with N-GQDs) were investigated. The photoresponsivity of the hybrid photodetector based on anatase TiO2/N-GQDs heterojunction has been enhanced by almost 2.5 times in magnitude than that of the photodetector based on pure anatase TiO2 film. This result was validated by elucidated energy band alignment between the anatase TiO2 and N-GQDs films, which resulted in a higher absorption rate, and an efficient transport mechanism in the hybrid junction-based photodetector than that of the pure TiO2-based photodetector.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Algadi H, Mahata C, Kim S, Dalapati GK (2010) Improvement of photoresponse properties of self-powered ITO/InP Schottky junction photodetector by interfacial ZnO passivation. J Electron Mater 1800–1806. https://doi.org/10.1007/s11664-020-08565-1

  2. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12(14):13–22. https://doi.org/10.30919/ES8D1129

    Article  CAS  Google Scholar 

  3. Umar A, Ibrahim AA, Algadi H, Albargi H, Alsairi MA, Wang Y, Akbar S (2021) Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. Ceram Int 47:25696–25707. https://doi.org/10.1016/j.ceramint.2021.05.296

    Article  CAS  Google Scholar 

  4. Algadi H, Mahata C, Sahoo B, Kim M, Koh WG, Lee T (2020) Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. Organic Electr 76:105444. https://doi.org/10.1016/j.orgel.2019.105444

  5. Lee S, Kim JH, Park Y, Choi W (2020) Analysis of the properties of tungsten carbide thin films according to the sputtering radio frequency power. Sci Adv Mater 12:1568–1571. https://doi.org/10.1166/sam.2020.3794

    Article  CAS  Google Scholar 

  6. Niu M, Sui K, Wu X, Cao D, Liu C (2021) GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials 2021:1–11. https://doi.org/10.1007/S42114-021-00296-Z

    Article  Google Scholar 

  7. Fouda AN (2020) Morphological deformation of hydrothermally synthesized graphene/carbon nanotubes. J Nanoelectron Optoelectron 15(8):984–989. https://doi.org/10.1166/jno.2020.2800

    Article  CAS  Google Scholar 

  8. Sawant JP, Shaikh SF, Kale RB, Pathan HM (2020) Chemical bath deposition of CuInS2thin films and synthesis of CuInS2nanocrystals: a review. Eng Sci 12:1–12. https://doi.org/10.30919/ES8D1142

  9. Algadi H, Mahata C, Woo J, Lee M, Kim M, Lee T (2019) Enhanced photoresponsivity of all-inorganic (CsPbBr3) perovskite nanosheets photodetector with carbon nanodots (CDs). Electronics 8(6):678. https://doi.org/10.3390/electronics8060678

    Article  CAS  Google Scholar 

  10. Zhang P, Dai X, Wu L-P, Cai H, Gai J-G (2020) Plasma oxidation followed by vapor removal for enhancing intactness of transferred large-area graphene. Sci Adv Mater 12(8):1252–1260. https://doi.org/10.1166/sam.2020.3762

    Article  CAS  Google Scholar 

  11. Zhao W, Yan Z, Qian L (2020) Graphitic carbon nitride: preparation, properties and applications in energy storage. Eng Sci 10:24–34. https://doi.org/10.30919/ES8D1008

    Article  CAS  Google Scholar 

  12. Danish M, Qamar M, Suliman M, Muneer M (2020) Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO2 nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension. Adv Compos Hybrid Mater 3(4):570–582. https://doi.org/10.1007/S42114-020-00187-9

    Article  CAS  Google Scholar 

  13. Sun J (2020) A photodetector applied in optical communication system and its performance prediction under mathematical model. J Nanoelectron Optoelectron 15(10):1260–1268. https://doi.org/10.1166/jno.2020.2874

    Article  CAS  Google Scholar 

  14. Li Z-J, Wang X, He Q, Du S-M, Pang X-J, Zhang Y-Z (2020) Tribological investigation of multilayer graphene as lithium grease additives. Sci Adv Mater 12(6):884–891. https://doi.org/10.1166/sam.2020.3747

    Article  CAS  Google Scholar 

  15. Algadi H, Umar A, Albargi H, Alsuwian T, Baskoutas S (2021) Carbon nanodots as a potential transport layer for boosting performance of all-inorganic perovskite nanocrystals-based photodetector. Curr Comput-Aided Drug Des 11:717. https://doi.org/10.3390/cryst11060717

    Article  CAS  Google Scholar 

  16. Aly AH, Zaky ZA, Shalaby AS, Ahmed AM, Vigneswaran D (2020) Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys Scr 95:035510. https://doi.org/10.1088/1402-4896/ab53f5

  17. Desai UV, Xu C, Wu J, Gao D (2013) Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117:3232–3239. https://doi.org/10.1021/JP3096727

    Article  CAS  Google Scholar 

  18. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013. https://doi.org/10.1021/NL061197H

    Article  CAS  Google Scholar 

  19. Pan L, Huang H, Lim CK, Hong QY, Tse MS, Tan OK (2013) TiO2 rutile–anatase core–shell nanorod and nanotube arrays for photocatalytic applications. RSC Adv 3:3566–3571. https://doi.org/10.1039/C3RA22842H

    Article  CAS  Google Scholar 

  20. Huang H, Han L, Wang Y, Yang Z, Zhu F, Xu M (2020) Tunable thermal-response shape memory bio-polymer hydrogelsas body motion sensors. Eng Sci 9:60–67. https://doi.org/10.30919/ES8D812

    Article  CAS  Google Scholar 

  21. Chandra Sekhar Reddy K, Sahatiya P, Santos-Sauceda I, Cortázar O, Ramírez-Bon R (2020) One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: development of self-powered ultraviolet photodetector. Appl Surf Sci 513:145804. https://doi.org/10.1016/j.apsusc.2020.145804

  22. Reddy YAK, Ajitha B, Sreedhar A, Varrla E (2019) Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films. Appl Surf Sci 494:575–582. https://doi.org/10.1016/j.apsusc.2019.07.124

    Article  CAS  Google Scholar 

  23. Hsu CL, Wu HY, Fang CC, Chang SP (2018) Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles. ACS Appl Energy Mater 1:2087–2095. https://doi.org/10.1021/acsaem.8b00180

    Article  CAS  Google Scholar 

  24. Lim J, Ahn G, Jeong I, Song H (2020) Intrinsic tunneling characteristics of aryl alkane monolayers sandwiched between single-layer graphene electrodes. Sci Adv Mat 12(4):470–473. https://doi.org/10.1166/sam.2020.3639

    Article  CAS  Google Scholar 

  25. Lee H-Y, Lin T-S, Lee C-T (2018) Stacked WO nanosphere and WO thin film metal-semiconductors-metal ultraviolet photodetectors. ECS Journal of Solid State Science and Technology 7:Q85. https://doi.org/10.1149/2.0191805JSS

  26. Mahala P, Patel M, Ban DK, Nguyen TT, Yi J, Kim J (2020) High-performing self-driven ultraviolet photodetector by TiO2/Co3O4 photovoltaics. J Alloys Compd 827:154376. https://doi.org/10.1016/j.jallcom.2020.154376

  27. Bhujbal PK, Pathan HM, Chaure NB (2020) Temperature dependent studies on radio frequency sputtered Al doped ZnO thin films. Eng Sci 10:58–67. https://doi.org/10.30919/ES8D1003

    Article  CAS  Google Scholar 

  28. Li R, Lin C, Wang N, Luo L, Chen Y, Li J, Guo Z (2018) Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. Adv Compos Hybrid Mater 1(3):440–459. https://doi.org/10.1007/S42114-018-0038-1

    Article  CAS  Google Scholar 

  29. Ng S, Yam FK, Sohimee SN, Beh KP, Tneh SS, Cheong YL, Hassan Z (2018) Photoelectrochemical ultraviolet photodetector by anodic titanium dioxide nanotube layers. Sens Actuator A Phys 279:263–271. https://doi.org/10.1016/j.sna.2018.06.030

    Article  CAS  Google Scholar 

  30. Karaagac H, Aygun LE, Parlak M, Ghaffari M, Biyikli N, Okyay AK (2012) Au/TiO2 nanorod-based Schottky-type UV photodetectors. Phys Status Solid Rapid Res Lett 6(11):442–444. https://doi.org/10.1002/PSSR.201206379

    Article  CAS  Google Scholar 

  31. Haider AJ, Jameel ZN, Al-Hussaini IHM (2019) Review on: titanium dioxide applications. Energy Procedia 157:17–29. https://doi.org/10.1016/J.EGYPRO.2018.11.159

    Article  CAS  Google Scholar 

  32. Reghunath S, Pinheiro D, KR SD (2021) A review of hierarchical nanostructures of TiO2: advances and applications. Appl Surf Sci Adv 3:100063. https://doi.org/10.1016/J.APSADV.2021.100063

  33. Yi X, Ren Z, Chen N, Li C, Zhong X, Yang S, Wang J (2017) TiO Nanocrystal/perovskite bilayer for high-performance photodetectors. Adv Electron Mater 3:1700251. https://doi.org/10.1002/aelm.201700251

  34. Perraudeau A, Dublanche-Tixier C, Tristant P, Chazelas C (2019) Dynamic mode optimization for the deposition of homogeneous TiO thin film by atmospheric pressure PECVD using a microwave plasma torch. Appl Surf Sci 493:703–709. https://doi.org/10.1016/J.APSUSC.2019.07.057

  35. Doubi Y, Hartiti B, Hicham L, Fadili S, Batan A, Tahri M, Belfhaili A, Thevnin P (2020) Effect of annealing time on structural and optical proprieties of TiO thin films elaborated by spray pyrolysis technique for future gas sensor application. Materials Today: Proceedings 30:823–827. https://doi.org/10.1016/J.MATPR.2020.04.186

  36. Singh KJ, Sahni M, Rajoriya M (2019) Study of structural, optical and semiconducting properties of TiO2 thin film deposited by RF magnetron sputtering. Materials Today: Proceedings 12:565–572. https://doi.org/10.1016/J.MATPR.2019.03.099

    Article  CAS  Google Scholar 

  37. Saleem MR, Silfsten P, Honkanen S, Turunen J (2012) Thermal properties of TiO films grown by atomic layer deposition. Thin Solid Films 520:5442–5446. https://doi.org/10.1016/J.TSF.2012.04.008

  38. Zhang D, Jing F, Gao F, Shen L, Sun D, Zhou J, Chen Y, Ruan S (2015) Enhanced performance of a TiO ultraviolet detector modified with graphene oxide. RSC Adv 5:83795–83800. https://doi.org/10.1039/C5RA17023K

  39. Yin X, Liu G, Cao S (2020) Design of laser ranging device using the improved photodetector and its usage in geosynchronous earth orbit navigation satellite orbit determination. J Nanoelectron Optoelectron 15(12):1508–1517. https://doi.org/10.1166/jno.2020.2900

    Article  CAS  Google Scholar 

  40. Li G-Y, Li J, Li Z-J, Zhang Y-P, Zhang X, Wang Z-J, Han W-P, Sun B, Long Y-Z, Zhang H-D (2021) Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybrid Mater 1–10. https://doi.org/10.1007/s42114-021-00331-z

  41. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z (2019) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2(1):1–33. https://doi.org/10.1007/S42114-018-0067-9

    Article  Google Scholar 

  42. Gao C, Li X, Zhu X, Chen L, Wang Y, Teng F, Zhang Z, Duan H, Xie E (2014) High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2-TiO2 core-shell electrodes. J Alloys Compd 616:510–515. https://doi.org/10.1016/j.jallcom.2014.07.171

    Article  CAS  Google Scholar 

  43. Phukan P, Sahu PP (2020) High performance UV photodetector based on metal-semiconductor-metal structure using TiO2-rGO composite. Opt Mater 109:110330. https://doi.org/10.1016/j.optmat.2020.110330

  44. Zheng W, Dong Y, Li T, Chen JH, Chen X, Dai Y, He G (2021) MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors. J Alloys Compd 869:159299. https://doi.org/10.1016/j.jallcom.2021.159299

  45. Kumar GS, Thupakula U, Sarkar PK, Acharya S (2015) Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv 5(35):27711–27716. https://doi.org/10.1039/c5ra01399b

    Article  CAS  Google Scholar 

  46. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28(23):4632–4638. https://doi.org/10.1002/adma.201600058

    Article  CAS  Google Scholar 

  47. Ma X, Zhong W, Zhao J, Suib SL, Lei Y (2020) Self-heating enabled one-pot synthesis of fluorescent carbon dots. Eng Sci 9:44–49. https://doi.org/10.30919/ES8D805

    Article  CAS  Google Scholar 

  48. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4(1):1–11. https://doi.org/10.1038/srep05294

    Article  CAS  Google Scholar 

  49. Liu C, Lin Y, Dong Y, Wu Y, Bao Y, Yan H, Ma J (2020) Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance. Adv Compos Hybrid Mater 3(3):402–414. https://doi.org/10.1007/S42114-020-00164-2

    Article  CAS  Google Scholar 

  50. Zhou B, Jiang X, Liu Z, Shen R, Rogachev AV (2013) Preparation and characterization of TiO thin film by thermal oxidation of sputtered Ti film. Mater Sci Semicond Process 16:513–519. https://doi.org/10.1016/J.MSSP.2012.05.001

  51. Güzelçimen F, Tanören B, Çetinkaya Ç, Kaya MD, Efkere Hİ, Özen Y, Bingöl D, Sirkeci M, Kınacı B, Ünlü MB, Özçelik S (2020) The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM. Vacuum 182:109766. https://doi.org/10.1016/j.vacuum.2020.109766

  52. Nair PB, Justinvictor VB, Daniel GP, Joy K, James Raju KC, Devraj Kumar D, Thomas PV (2014) Optical parameters induced by phase transformation in RF magnetron sputtered TiO nanostructured thin films. Prog Nat Sci Mater Int 24(3):218–225. https://doi.org/10.1016/J.PNSC.2014.05.010

  53. Huang H, Xie Y, Zhang Z, Zhang F, Xu Q, Wu Z (2014) Growth and fabrication of sputtered TiO2 based ultraviolet detectors. Appl Surf Sci 293:248–254. https://doi.org/10.1016/J.APSUSC.2013.12.142

    Article  CAS  Google Scholar 

  54. Ka I, Gerlein LF, Nechache R, Cloutier SG (2017) High-performance nanotube-enhanced perovskite photodetectors. Sci Rep 7:1–8. https://doi.org/10.1038/srep45543

    Article  CAS  Google Scholar 

  55. Zhou L, Yu K, Yang F, Zheng J, Zuo Y, Li C, Cheng B, Wang Q (2017) All-inorganic perovskite quantum dot/mesoporous TiO composite-based photodetectors with enhanced performance. Dalton Trans 46:1766–1769. https://doi.org/10.1039/c6dt04758k

  56. Chen C, Qiao H, Lin S, Man Luk C, Liu Y, Xu Z, Song J, Xue Y, Li D, Yuan J, Yu W, Pan C, Ping Lau S, Bao Q (2015) Highly responsive MoS photodetectors enhanced by graphene quantum dots. Sci Rep 5:1–9. https://doi.org/10.1038/srep11830

  57. Huang H, Xie Y, Yang W, Zhang F, Cai J, Wu Z (2011) Low-dark-current TiO2 MSM UV photodetectors with Pt Schottky contacts. IEEE Electron Device Lett 32:530–532. https://doi.org/10.1109/LED.2011.2104354

    Article  CAS  Google Scholar 

  58. Yang J, Jiang Y-L, Li L-J, Muhire E, Gao M-Z (2016) High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8:8170–8177. https://doi.org/10.1039/C5NR09248E

    Article  CAS  Google Scholar 

  59. Song X, Liu X, Yu D, Huo C, Ji J, Li X, Zhang S, Zou Y, Zhu G, Wang Y, Wu M, Xie A, Zeng H (2018) Boosting twodimensional MoS /CsPbBr photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10:2801–2809. https://doi.org/10.1021/acsami.7b14745

  60. Yuan X, Shao Z, Xia H, Zhang Q, Hu W, Zhang Q, Lee S-T, Jie J, Diao S, Wang L, Deng W (2015) Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 9:1561–1570. https://doi.org/10.1021/acsnano.5b00437

    Article  CAS  Google Scholar 

  61. Ma C, Shi Y, Hu W, Chiu MH, Liu Z, Bera A, Li F, Wang H, Li LJ, Wu T (2016) Heterostructured WS2/CH3NH3PbI3photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater 28:3683–3689. https://doi.org/10.1002/adma.201600069

    Article  CAS  Google Scholar 

  62. Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH, Hwang E (2014) High-performance graphene-quantum-dot photodetectors. Sci Rep 4:4–9. https://doi.org/10.1038/srep05603

    Article  CAS  Google Scholar 

  63. Tetsuka H, Nagoya A, Tamura SI (2016) Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets. Nanoscale 8:19677–19683. https://doi.org/10.1039/c6nr07707b

    Article  CAS  Google Scholar 

  64. Nguyen DA, Oh HM, Duong NT, Bang S, Yoon SJ, Jeong MS (2018) Highly enhanced photoresponsivity of a monolayer WSe photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces 10:10322–10329. https://doi.org/10.1021/ACSAMI.7B18419

Download references

Funding

This study is financially supported by the Ministry of Education, Kingdom of Saudi Arabia, for this research through a grant (PCSED-012–18) under the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan algadi or Ahmad Umar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

algadi, H., Albargi, H., Umar, A. et al. Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Adv Compos Hybrid Mater 4, 1354–1366 (2021). https://doi.org/10.1007/s42114-021-00355-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00355-5

Keywords

Navigation