Skip to main content
Log in

P colonies

Survey

  • Survey Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

P colonies are abstract computing devices modelling communities of very simple reactive agents living and acting in a joint shared environment. The concept was motivated by so-called colonies, grammar systems based on interplay of very simple agents, on one hand, and by membrane systems, massively parallel computational models inspired by cell biology, on the other hand. Some variants of P colonies also allow the environment to participate actively in the system’s evolution. In this paper we summarize the most important results on P colonies, present open problems concerning these constructs, and suggest new research directions in their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alhazov, A., Aman, B., Freund, R., & Păun, Gh. (2014). Matter and Anti-matter in Membrane Systems. In H. Jürgensen, J. Karhumäki, & A. Okhotin A (Eds.) Descriptional complexity of formal systems: 16th international workshop, DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings (pp. 65–76). Cham: Springer

  2. Alhazov, A., Feund, R., & Morita, K. (2012). Sequential and maximally parallel multiset rewriting: Reversibility and determinism. Natural Computing, 11, 95–106.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alhazov, A., & Morita, K. (2010). On reversibility and determinism in P systems. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing, 10th international workshop, WMC 2009. Lecture notes in computer science (Vol. 5957, pp. 158–168). Berlin: Springer.

    Google Scholar 

  4. Cienciala, L., Ciencialová, L., Frisco, P., & Sosík, P. (2007). On the power of deterministic and sequential communicating P systems. International Journal of Foundations of Computer Science, 18(2), 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cienciala, L., Ciencialová, L., & Langer, M. (2014). Modellingof surface run off using 2D P colonies. Modelling of surface runoff using 2D P colonies. In A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing. CMC2013. Lecture Notes in computer science (Vol. 8340, pp. 101–116). Berlin: Springer.

    Google Scholar 

  6. Cienciala, L., Ciencialová, L., Langer, M., & Perdek, M. (2014). The abilities of P colony based models in robot control. The abilities of P colony based models in robot control. In M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, & C. Zandron (Eds.), Membrane computing. CMC 2014. Lecture notes in computer science (Vol. 8961, pp. 179–193). Cham: Springer.

    Google Scholar 

  7. Cienciala, L., & Ciencialová, L. (2009). Eco-P colonies. In G. Păun, M. Pérez-Jiménez, A. Riscos-Núñez (Eds.) Pre-proceedings of the 10th workshop on membrane computing, Curtea de Arges, Romania (pp. 201–209)

  8. Cienciala, L., & Ciencialová, L. (2011). P colonies and their extensions. In J. Kelemen & A. Kelemenová (Eds.), Computation, cooperation, and life. Lecture notes in computer science (Vol. 6610, pp. 158–169). Berlin: Springer.

    Chapter  Google Scholar 

  9. Cienciala, L., & Ciencialová, L. (2016). Some new results of P colonies with bounded parameters. Natural Computing, 17, 1–12.

    MathSciNet  Google Scholar 

  10. Cienciala, L., Ciencialová, L., & Csuhaj-Varjú, E. (2014). P colonies processing strings. Fundamenta Informaticae, 134(1–2), 51–65.

    MathSciNet  MATH  Google Scholar 

  11. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., & Sosík, P. (2016). P Colonies. Bulletin of the International Membrane Computing Society, 2, 129–156.

    MATH  Google Scholar 

  12. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Sosík, P. (2018). A logical representation of P colonies: An introduction. In C. Graciani, A. Riscos-Núñez, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Enjoying natural computing. Lecture notes in computer science (Vol. 11270, pp. 66–76). Cham: Springer.

    Chapter  Google Scholar 

  13. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy. (2010). PCol automata: recognizing strings with P colonies. In M. A. del Amor, G. Păun, I. P. H. de Mendoza, & A. R. Núñez (Eds.), Eighth brainstorming week on membrane computing. Sevilla, 2010 RGNC Report 01/2010 (pp. 65–76). Sevilla: Fénix Editora.

    Google Scholar 

  14. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy. (2018). Verifying APCol Systems. In Hinze, T., Behre, J. (eds.) Proceedings of the nineteenth international conference on membrane computing (CMC19), Pro BUSINESS Verlag, pp. 247–258

  15. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy. (2019). APCol systems with verifier agents. In T. Hinze, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2018. Lecture notes in computer science (Vol. 11399, pp. 95–107). Cham: Springer.

    Google Scholar 

  16. Cienciala, L., Ciencialová, L., & Kelemenová, A. (2007). Onthe number of agents in P colonies. In G. Eleftherakis, P. Kefalas, Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing. WMC 2007. Lecture notes in computer science (Vol. 4860, pp. 193–208). Berlin: Springer.

    Google Scholar 

  17. Cienciala, L., Ciencialová, L., & Kelemenová, A. (2008). Homogeneous P colonies. Computing and Informatics, 27(3+), 481–496.

    MathSciNet  MATH  Google Scholar 

  18. Cienciala, L., Ciencialová, L., & Langer, M. (2012). Modularityin P colonies with checking rules. In M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, & S. Verlan (Eds.), Membrane computing. CMC2011. Lecture notes in computer science (Vol. 7184, pp. 104–119). Heidelberg: Springer.

    Google Scholar 

  19. Cienciala, L., Ciencialová, L., & Perdek, M. (2012). 2D Pcolonies. In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil (Eds.), Membrane computing. CMC 2012. Lecture notes in computer science (Vol. 7762, pp. 161–172). Berlin: Springer.

    Google Scholar 

  20. Ciencialová, L. (2019). APCol systems with agent creation. In T. Hinze, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2018. Lecture notes in computer science (Vol. 11399, pp. 84–94). Cham: Springer.

    Google Scholar 

  21. Ciencialová, L., Cienciala, L., & Csuhaj-Varjú, E. (2018). APCol systems with teams. In M. Gheorghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2017. Lecture notes in computer science (Vol. 10725, pp. 88–104). Cham: Springer.

    Google Scholar 

  22. Ciencialová, L., Cienciala, L., & Perdek, M. (2014). 2D P colonies used in hydrology simulations. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 1(2), 3–10.

    MATH  Google Scholar 

  23. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., & Vaszil, Gy. (2009). Variants of P colonies with very simple cell structure. International Journal of Computers, Communications and Control, 4(3), 224–233.

    Article  Google Scholar 

  24. Ciencialová, L., Cienciala, L., & Sosík, P. (2016). Generalized P colonies with passive environment. In C. Graciani, D. Orellana-Martín, A. Riscos-Núñez, Á. Romero-Jiménez, L. Valencia-Cabrera (Eds.) Fourteen brainstorming week on membrane computing, pp. 151–162

  25. Ciencialová, L., Cienciala, L., & Sosík, P. (2017). Pcolonies with evolving environment. In A. Leporati, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2016. Lecture notes in computer science (Vol. 10105, pp. 151–164). Cham: Springer.

    Google Scholar 

  26. Csuhaj-Varjú, E. (2003). P and dP Automata: Unconventional versus Classical Automata. International Journal of Foundations of Computer Science, 24(7), 995–1008.

    Article  MathSciNet  MATH  Google Scholar 

  27. Csuhaj-Varjú, E. (2016). Extensions of P colonies (extended abstract). In: A. Leporati, & C. Zandron (Eds.) Proc. CMC17, Milan, 2016. University Milano-Bicocca & IMCS, Italy, pp. 281–286

  28. Csuhaj-Varjú, E., Gheorghe, M., & Lefticaru, R. (2018). P colonies and kernel p systems. International Journal of Advances in Engineering Sciences and Applied Mathematics, 10(3), 181–192.

    Article  MathSciNet  Google Scholar 

  29. Csuhaj-Varjú, E., Ibarra, O. H., & Vaszil, Gy. (2006). On the computational complexity of P automata. Natural Computing, 5(2), 109–126.

    Article  MathSciNet  MATH  Google Scholar 

  30. Csuhaj-Varjú, E., Kántor, K., & Vaszil, Gy. (2018). Deterministic parsing with P colony automata. In C. Graciani, A. Riscos-Núñez, Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), Enjoying natural computing. Lecture notes in computer science (Vol. 11270, pp. 88–98). Cham: Springer.

    Chapter  Google Scholar 

  31. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., & Vaszil, G. (2006). Computing with cells in environment: P colonies. Journal of Multiple-Valued Logic and Soft Computing, 12(3), 201–215.

    MathSciNet  MATH  Google Scholar 

  32. Csuhaj-Varjú, E., Margenstern, M., & Vaszil, Gy. (2006). Pcolonies with a bounded number of cells and programs. In H. J. Hoogeboom, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing. WMC 2006. Lecture notes in computer science (Vol. 4361, pp. 352–366). Heidelberg: Springer.

    Google Scholar 

  33. Csuhaj-Varjú, E., & Verlan, S. (2018). Computationally complete generalized communicating P systems with three cells. In M. Gheorghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2017. Lecture notes in computer science (Vol. 10725, pp. 118–128). Cham: Springer.

    Google Scholar 

  34. Csuhaj-Varjú, E., & Verlan, S. (2018). Bi-simulation between PColonies and P systems with multi-stable catalysts. In M. Gheorghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2017. Lecture notes in computer science (Vol. 10725, pp. 88–104). Cham: Springer.

    Google Scholar 

  35. Freund, R., & Oswald, M. (2005). P colonies working in the maximally parallel and in the sequential mode. In D. Zaharie, D. Petcu, V. Negru, T. Jebelean, G. Ciobanu, A. Cicortas, A. Abraham, & M. Paprzycki (Eds.), Seventh international symposium on symbolic and numeric algorithms for scientific computing (SYNASC 2005), 25–29 September 2005 (pp. 419–426). Timisoara, Romania: IEEE Computer Society.

    Google Scholar 

  36. Freund, R., & Oswald, M. (2006). P colonies and prescribed teams. International Journal of Computer Mathematics, 83(7), 569–592.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gardner, M. (1970). Mathematical Games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.

    Article  Google Scholar 

  38. Gheorghe, M., Păun, Gh, Pérez-Jiménez, M. J., & Rozenberg, G. (2013). Research frontiers of membrane computing: Open problems and research topics. International Journal of Foundations of Computer Science, 24(5), 547–624. (Section 5. P Colonies and dP Automata by Erzsébet Csuhaj-Varjú).

    Article  MathSciNet  MATH  Google Scholar 

  39. Kántor, K., & Vaszil, Gy. (2014). Generalized P colony automata. Jornal of Automata, Language and Combinatorics, 19(1–4), 145–156.

    MathSciNet  MATH  Google Scholar 

  40. Kántor, K., & Vaszil, Gy. (2018). Generalized P colony automata and their relation to P automata. In M. Gheorghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC 2017. Lecture notes in computer science (Vol. 10725, pp. 167–182). Cham: Springer.

    Google Scholar 

  41. Kántor, K., & Vaszil, G. (2018). On the classes of languages characterized by generalized P colony automata. Theoretical Computer Science, 724, 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kelemen, J., & Kelemenová, A. (1992). A grammar-theoretic treatment of multiagent systems. Cybernetics and Systems, 23(6), 621–633.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kelemen, J., & Kelemenová, A. (2005). On P colonies, a biochemically inspired model of computation. In Proc. of the 6th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest TECH (pp. 40–56). Hungary

  44. Kelemen, J., Kelemenová, A., & Păun, G. (2004). Preview of P colonies: A biochemically inspired computing model. In Workshop and tutorial proceedings. Ninth international conference on the simulation and synthesis of living systems (Alife IX) (pp. 82–86). Boston, Massachusetts, USA

  45. Kelemenová, A. (2010). P Colonies, chap. 23.1, pp. 584–593. In: [50]

  46. Krishna, S. N., Gheorghe, M., Ipate, F., Csuhaj-Varjú, E., & Ceterchi, R. (2017). Further results on generalised communicating P systems. Theoretical Computer Science, 701, 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  47. van Leeuwen, J., & Wiedermann, J. (2012). Computation as an unbounded process. Theoretical Computer Science, 429, 202–212.

    Article  MathSciNet  MATH  Google Scholar 

  48. Minsky, M. L. (1967). Computation: Finite and infinite machines. Upper Saddle River, NJ, USA: Prentice-Hall Inc.

    MATH  Google Scholar 

  49. Oswald, M. (2003). P automata. PhD dissertation, Technological University of Vienna, Vienna

  50. Păun, Gh, Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. New York, NY, USA: Oxford University Press Inc.

    Book  MATH  Google Scholar 

  51. Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  MATH  Google Scholar 

  52. Păun, Gh, & Pérez-Jiménez, M. J. (2010). Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computers, Communication and Control, 5(2), 238–252.

    Article  Google Scholar 

  53. Păun, Gh, & Pérez-Jiménez, M. J. (2012). P automata revisited. Theoretical Computer Science, 454, 222–230.

    Article  MathSciNet  MATH  Google Scholar 

  54. Rozenberg, G., & Salomaa, A. (1997). Handbook of formal languages: Beyonds words. Handbook of formal languages. Berlin: Springer.

    Book  MATH  Google Scholar 

  55. Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of Formal languages: Word, language, grammar. New York: Springer.

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602, and by the Silesian University in Opava under the Student Funding Scheme, project SGS/11/2019. The work of E. CS-V. was supported by NKFIH (National Research, Development, and Innovation Office), Hungary, Grant no. K 120558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Ciencialová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L. et al. P colonies. J Membr Comput 1, 178–197 (2019). https://doi.org/10.1007/s41965-019-00019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00019-w

Keywords

Navigation