Skip to main content
Log in

Effect of multiple parameters on the supersonic gas-jet target characteristics for laser wakefield acceleration

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The supersonic gas-jet target is an important experimental target for laser wakefield acceleration (LWFA), which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering gamma rays. According to different electron acceleration requirements, it is necessary to provide specific supersonic gas jets with different density profiles to generate electron beams with high quality and high repetition rates. In this study, the interference images and density profiles of different gas-jet targets were obtained through a modified Nomarski interference diagnosis system. The relationships between the gas density and back pressure, nozzle structure, and other key parameters were studied. Targets with different characteristics are conducive to meeting the various requirements of LWFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309 (2006). https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  2. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979). https://doi.org/10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  3. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009). https://doi.org/10.1103/RevModPhys.81.1229

    Article  ADS  Google Scholar 

  4. X. Wang, R. Zgadzaj, N. Fazel et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nature Commun. 4, 1988 (2013). https://doi.org/10.1038/ncomms2988

    Article  ADS  Google Scholar 

  5. A.J. Gonsalves, K. Nakamura, J. Daniels et al., Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019). https://doi.org/10.1103/PhysRevLett.122.084801

  6. A. Rousse, K.T. Phuoc, R. Shah et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004). https://doi.org/10.1103/PhysRevLett.93.135005

  7. S. Corde, K.T. Phuoc, G. Lambert et al., Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013). https://doi.org/10.1103/RevModPhys.85.1

    Article  ADS  Google Scholar 

  8. K.T. Phuoc, S. Corde, R. Shah et al., Imaging electron trajectories in a laser-wakefield cavity using betatron x-ray radiation. Phys. Rev. Lett. 97, 225002 (2006). https://doi.org/10.1103/PhysRevLett.97.225002

  9. Y. Lu, G. Zhang, J. Zhao et al., Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses. Opt. Express 29, 6 (2021). https://doi.org/10.1364/OE.419761

    Article  ADS  Google Scholar 

  10. S.G. Rykovanov, C.G.R. Geddes, J.-L. Vay et al., Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels. J. Phys. B AT Mol. Opt. 47, 23 (2014). https://doi.org/10.1088/0953-4075/47/23/234013

    Article  Google Scholar 

  11. E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering. Energ. Convers. Manage. 77, 558 (2014). https://doi.org/10.1103/RevModPhys.78.3091

    Article  Google Scholar 

  12. D. Li, K. Imasaki, K. Horikawa et al., Iodine transmutation through laser compton scattering gamma rays. J. Nucl. Sci. Technol. 46, 8 (2009). https://doi.org/10.3327/jnst.46.831

    Article  Google Scholar 

  13. H. Xu, H. Wu, G. Fan et al., A new consecutive energy calibration method for X/\( \gamma \) detectors based on energy continuously tunable laser Compton scattering light source. Nucl. Sci. Tech. 28, 121 (2017). https://doi.org/10.1007/s41365-017-0272-1

    Article  Google Scholar 

  14. X. Zhu, M. Chen, S. Weng et al., Extremely brilliant GeV \(\gamma\) -rays from a two-stage laser-plasma accelerator. Sci. Adv. 6, 22 (2020). https://doi.org/10.1126/sciadv.aaz7240

    Article  Google Scholar 

  15. C.G.R. Geddes, C. Toth, J. Van Tilborg et al., High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004). https://doi.org/10.1038/nature02900

    Article  ADS  Google Scholar 

  16. J. Faure, Y. Glinec, A. Pukhov et al., High-charge energetic electron bunch generated by 100 TW laser pulse. Nature 431, 541 (2004). https://doi.org/10.1038/nature02963

    Article  ADS  Google Scholar 

  17. S.P.D. Mangles, C.D. Murphy, Z. Najmudin et al., Particle acceleration using intense laser produced plasmas. Nature 431, 535 (2004). https://doi.org/10.1038/nature02939

    Article  ADS  Google Scholar 

  18. F. Sylla, A. Flacco, S. Kahaly et al., Short intense laser pulse collapse in near-critical plasma. Phys. Rev. Lett. 110, 085001 (2013). https://doi.org/10.1103/PhysRevLett.110.085001

    Article  Google Scholar 

  19. W. Wang, W. Li, J. Liu et al., High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016). https://doi.org/10.1103/PhysRevLett.117.124801

    Article  Google Scholar 

  20. F. Salehi, A.J. Goers, G.A. Hine et al., MeV electron acceleration at 1 kHz with<10 mJ laser pulses. Optics Lett. 42, 2 (2017). https://doi.org/10.1364/OL.42.000215

    Article  Google Scholar 

  21. D. Guenot, D. Gustas, A. Vernier et al., Relativistic electron beams driven by kHz single-cycle light pulses Nat. Photonics 11, 5 (2017). https://doi.org/10.1038/nphoton.2017.46

    Article  Google Scholar 

  22. K. Schmida, L. Veisz, Supersonic gas jets for laser-plasma experiments. Rev. Sci. Instrum. 83, 053304 (2012). https://doi.org/10.1063/1.4719915

    Article  Google Scholar 

  23. B. Landgraf, M. Schnell, A. Savert et al., High resolution 3D gas-jet characterization. Rev. Sci. Instrum. 82, 083106 (2011). https://doi.org/10.1063/1.3624694

    Article  Google Scholar 

  24. V. Malka, C. Coulaud, J.P. Geindre et al., Characterization of neutral density profile in a wide range of pressure of cylindrical pulsed gas jets. Rev. Sci. Instrum. 71, 2329 (2000). https://doi.org/10.1063/1.1150619

    Article  Google Scholar 

  25. S. Lorenz, G. Grittani, E. Chacon-Golcher et al., Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments. Matter. Radiat. Extremes 4, 015401 (2019). https://doi.org/10.1063/1.5081509

    Article  Google Scholar 

  26. F. Sylla, M. Veltcheva, S. Kahaly et al., Development and characterization of very dense submillimetric gas jets for laser-plasma interaction. Rev. Sci. Instrum. 83, 033507 (2012). https://doi.org/10.1063/1.3697859

    Article  Google Scholar 

  27. A.M. Hansen, D. Haberberger, J. Katz et al., Supersonic gas-jet characterization with interferometry and Thomson scattering on the OMEGA Laser System. Rev. Sci. Instrum. 89, 10C103 (2018). https://doi.org/10.1063/1.5036645

    Article  Google Scholar 

  28. X. Jun, H. Feng, C. Zhong et al., Super-resolution of interference pattern with independent laser beams. Chin. Phys. Lett. 22, 2824 (2005). https://doi.org/10.1088/0256-307X/22/11/027

    Article  Google Scholar 

  29. X. Yang, A new MachZehnder interferometer to measure light beam dispersion and phase shift. Chin. Phys. Lett. 30, 040701 (2013). https://doi.org/10.1088/0256-307X/30/4/040701

    Article  Google Scholar 

  30. J. Nejdl, J. VanCura, K. Bohacek et al., Imaging Michelson interferometer for a low-density gas jet characterization. Rev. Sci. Instrum. 90, 065107 (2019). https://doi.org/10.1063/1.5098084

    Article  Google Scholar 

  31. S. Feister, J.A. Nees, J.T. Morrison et al., A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments. Rev. Sci. Instrum. 85, 11D602 (2014). https://doi.org/10.1063/1.4886955

    Article  Google Scholar 

  32. Q. Liu, M. Ma, X. Zhang et al., Application of Nomarski interference system in supersonic gas-jet target diagnosis. AIP Adv. 11, 015145 (2021). https://doi.org/10.1063/5.0027317

    Article  Google Scholar 

  33. G. Pretzier, A new method for numerical Abel-inversion. Zeitschrift fur Naturforschung A 46, 639-641 (1991). https://doi.org/10.1515/zna-1991-0715

    Article  MathSciNet  Google Scholar 

  34. L.M. Smith, D.R. Keefer, S.I. Sudharsanan, Abel inversion using transform techniques. J. Quant. Spectrosc. Radiat. Transf. 39, 367-373 (1988). https://doi.org/10.1016/0022-4073(88)90101-X

    Article  Google Scholar 

  35. H.A. Lorentz, Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann. Phys. 245, 641–655 (1880). https://doi.org/10.1002/andp.18802450406

    Article  MATH  Google Scholar 

  36. L. Lorenz, Ueber die Refractionsconstante. Ann. Phys. 247, 70–103 (1880). https://doi.org/10.1002/andp.18802470905

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experiment was carried out by Qiu-Shi Liu, Ming-Jiang Ma, Bao-Zhen Zhao, Xiao-Hua Zhang, Xiang-Hao Meng, and Xiao-Na Ban. Data analysis was performed by Qiu-Shi Liu, Bing Guo, Chong Lv, Ji Zhang, Bao-Xian Tian, and Chuang-Ye He. Optical diagnosis system was set up by Qiu-Shi Liu, Ming-Jiang Ma, Zhao Wang, and Xiao-Feng Xi. The first draft of the manuscript was written by Qiu-Shi Liu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bao-Zhen Zhao or Bing Guo.

Additional information

This work was supported by the Programs for the National Natural Science Foundation of China (Nos. 11975316, 11775312, 12005305 and 61905287) and the Continue Basic Scientific Research Project (Nos. WDJC-2019-02 and BJ20002501).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QS., Ma, MJ., Zhao, BZ. et al. Effect of multiple parameters on the supersonic gas-jet target characteristics for laser wakefield acceleration. NUCL SCI TECH 32, 75 (2021). https://doi.org/10.1007/s41365-021-00910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00910-1

Keywords

Navigation