Skip to main content
Log in

Classification of smooth horizontal Schubert varieties

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that the smooth horizontal Schubert subvarieties of a rational homogeneous variety G / P are homogeneously embedded cominuscule , and are classified by subdiagrams of a Dynkin diagram. This generalizes the classification of smooth Schubert varieties in cominuscule G / P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. There is a typo in [14, Section 2.7.1]; see Sect. 4.4 for the corrected statement.

  2. See, in particular, Step 3 of [17, Section 7.3]; in the case under consideration, \(t = 1\) and \(i_t = \mathtt {i}\).

  3. In Hodge theory, rational homogeneous varieties arise as the compact duals of period domains (and, more generally, Mumford–Tate domains). In that context, a submanifold M is horizontal if and only if it satisfies Griffiths’ transversality condition. The set \({\mathcal {C}}_o\) of lines makes two distinct and unrelated appearances in Hodge theory: it may arise as the kernel of the Griffiths–Yukawa coupling (a differential invariant associated with a variation of Hodge structures), and as the compact dual associated with certain “boundary components” that arise when studying degenerations of Hodge structure.

  4. There is a typo in [14, Section 2.7.1]; on p. 87, S and \(S'\) should be swapped. This is corrected for in the discussion above.

References

  1. Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182. Birkhäuser, Boston (2000)

    Book  MATH  Google Scholar 

  2. Billey, S., Postnikov, A.: Smoothness of Schubert varieties via patterns in root subsystems. Adv. Appl. Math. 34(3), 447–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Math. Z. 231(2), 301–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Čap, A., Slovák, J.: Parabolic Geometries. I. Mathematical Surveys and Monographs, vol. 154. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  5. Coskun, I., Robles, C.: Flexibility of Schubert classes. Differential Geom. Appl. 31(6), 759–774 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coskun, I., Robles, C.: The geometry of exceptional homogeneous varieties. Private correspondence (2013)

  7. Hong, J.: Rigidity of smooth Schubert varieties in Hermitian symmetric spaces. Trans. Amer. Math. Soc. 359(5), 2361–2381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hong, J., Mok, N.: Characterization of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1. J. Algebraic Geom. 22(2), 333–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, J.-M., Mok, N.: Varieties of minimal rational tangents on uniruled projective manifolds. In: Schneider, M., Siu, Y.-T. (eds.) Several Complex Variables. Mathematical Sciences Research Institute Publications, vol. 37, pp. 351–389. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  10. Kerr, M., Robles, C.: Variations of Hodge structure and orbits in flag varieties (2014). arXiv:1407.4507

  11. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math. 81(4), 973–1032 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lakshmibai, V., Weyman, J.: Multiplicities of points on a Schubert variety in a minuscule \(G/P\). Adv. Math. 84(2), 179–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Landsberg, J.M., Manivel, L.: Representation theory and projective geometry. In: Popov, V.L. (ed.) Algebraic Transformation Groups and Algebraic Varieties. Encyclopaedia of Mathematical Sciences, vol. 132, pp. 71–122. Springer, Berlin (2004)

    Chapter  Google Scholar 

  15. Mihai, I.A.: Odd symplectic flag manifolds. Transform. Groups 12(3), 573–599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Richmond, E., Slofstra, W.: Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties. Math. Ann. 366(1–2), 31–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robles, C.: Schubert varieties as variations of Hodge structure. Selecta Math. (N.S.) 20(3), 719–768 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ryan, K.M.: On Schubert varieties in the flag manifold \(\text{ Sl }(n, {\mathbf{C}})\). Math. Ann. 276(2), 205–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Houston (1984)

    MATH  Google Scholar 

  20. Wolper, J.S.: A combinatorial approach to the singularities of Schubert varieties. Adv. Math. 76(2), 184–193 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen Robles.

Additional information

Kerr is partially supported by NSF grants DMS-1068974, 1259024, and 1361147. Robles gratefully acknowledges partial support from the NSF via grants DMS 1559592, 02468621, and 1361120. This work was undertaken while Robles was a member of the Institute for Advanced Study; she thanks the institute for a wonderful working environment and the Robert and Luisa Fernholz Foundation for financial support.

Appendix: Dynkin diagrams

Appendix: Dynkin diagrams

For the reader’s convenience we include in Fig. 2 the Dynkin diagrams of the complex simple Lie algebras. Recall that: each node corresponds to a simple root \(\alpha _i \in \mathcal {S}\); two nodes are connected if and only if and in this case the number if edges is (that is, ij are ordered so that the inequality holds). Below, if \(G = B_r\), then \(r \geqslant 3\); and if \(G = D_r\), then \(r \geqslant 4\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, M., Robles, C. Classification of smooth horizontal Schubert varieties. European Journal of Mathematics 3, 289–310 (2017). https://doi.org/10.1007/s40879-017-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0140-x

Keywords

Mathematics Subject Classification

Navigation