Skip to main content
Log in

Existence of ground states solutions for Dirac-Poisson systems

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper concerns the ground state solutions for the system of partial differential equations known as the Dirac-Poisson system. Under suitable assumptions on the nonlinearity, we show the existence of nontrivial and ground state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abenda, S.: Solitary waves for Maxwell-Dirac and Coulomb-Dirac models. Ann. Inst. Henri. Poincaré 68, 229–244 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Ackermann, N.: A Cauchy-Schwarz type inequality for bilinear integrals on positive measures. Proc. Amer. Math. Soc. 133, 2647–2656 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Booss-Bavnbek, B.: Unique continuation property for Dirac operator, revisited. Contemp. Math. 258, 21–32 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Ding, Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nach. 279, 1267–1288 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Ding, Y.H.: Solutions of nonlinear Dirac equations. J. Diff. Equ. 226, 210–249 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Benhassine, A.: Standing wave solutions of Maxwell-Dirac systems. Calc. Var. 60, 107 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Benhassine, A.: On nonlinear Dirac equations. J. Math. Phys. 60, 011510 (2019). https://doi.org/10.1063/1.5053684

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Lieb, E.: A relation between pointwise convergence of function and convergence of functional. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Chadam, J.M.: Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac system in one space dimension. J. Funct. Anal. 13, 173–184 (1973)

    MATH  Google Scholar 

  13. Chadam, J.M., Glassey, R.T.: On the Maxwell-Dirac equations with zero magnetic field and their solutions in two space dimension. J. Math. Anal. Appl. 53, 495–507 (1976)

    MathSciNet  MATH  Google Scholar 

  14. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Diff. Eq. 248, 521–543 (2010)

    MATH  Google Scholar 

  15. Chen, G.Y., Zheng, Y.Q.: Stationary solutions of non-autonomous Maxwell-Dirac systems. J. Diff. Equ. 255, 840–864 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Ding, Y.H.: Variational Methods for Strongly Indefinite Problems. World Scientific Press, Singapore (2008)

    Google Scholar 

  17. Ding, Y. H., Wei, J. C., Xu, T.: Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system, J. Math. Phys., 54 (2013)

  18. Ding, Y.H., Xu, T.: On the concentration of semi-classical states for a nonlinear Dira-cKlein-Gordon system. J. Diff. Equ. 256, 1264–1294 (2014)

    MATH  Google Scholar 

  19. Ding, Y.H., Xu, T.: On semi-classical limits of ground states of a nonlinear Maxwell-Dirac system. Calc. Var. Part. Diff. Equa. 51, 17–44 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Part. Differ. Equa. 4, 265–281 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. 45, 535–593 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Flato, M., Simon, J., Taffin, E.: On the global solutions of the Maxwell-Dirac equations. Commun. Math. Phys. 113, 21–49 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Finkelstein, R., Levier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83, 326–332 (1951)

    MathSciNet  MATH  Google Scholar 

  24. Finkelstein, R., Fronsdal, C., Kaus, P.: Nonlinear spinor field. Phys. Rev. 103, 1571–1579 (1956)

    MATH  Google Scholar 

  25. Georgiev, V.: Small amplitude solutions of Maxwell-Dirac equations. Indiana Univ. Math. J. 40, 845–883 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Gross, L.: The Cauchy problem for the coupled Maxwell-Dirac equations. Commun. Pure Appl. Math. 19, 1–5 (1966)

    MathSciNet  MATH  Google Scholar 

  27. Grandy Jr. W. T.: Relativistic Quantum Mechanics of Leptonsand Fields, Fundam. Theor. Phys., vol. 41, Kluwer Academic Publishers Group, Dordrecht, (1991)

  28. Glassey, R.T., Chadam, J.M.: Properties of the solutions of the Cauchy problem for the classical coupled Maxwell-Dirac equations in one space dimension. Proc. Am. Math. Soc. 43, 373–378 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Kryszewki, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Diff. Equ. 3, 441–472 (1998)

    MATH  Google Scholar 

  30. Lisi, A.G.: A solitary wave solution of the Maxwell-Dirac equations. J. Phys. A: Math. Gen. 28, 5385–5392 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984)

  32. Liu, Z.S., Guo, S.J.: On ground state solutions for the Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 412, 435–448 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Radford, C.J.: The stationary Maxwell-Dirace quations. J. Phys. A: Math. Gen. 36, 5663–5681 (2003)

    MATH  Google Scholar 

  34. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 665–674 (2006)

    Google Scholar 

  35. Sparber, C., Markowich, P.: Semiclassical asymptotics for the Maxwell-Dirac system. J. Math. Phys. 44, 4555–4572 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics, Springer, Berlin (1992)

    MATH  Google Scholar 

  37. Wakano, M.: Intensely localized solutions of the classical Dirac-Maxwell field equations. Progr. Theoret. Phys. 35, 1117–1141 (1966)

    Google Scholar 

  38. Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)

    MATH  Google Scholar 

  39. Wittmann, J.: Minimal kernels of Dirac operators along maps, Mathematische Nachrichten. 1-9 (2019)

  40. Yang, Z., Yu, Y., Zhao, F.: The concentration behavior of ground state solutions for a critical fractional Schrödinger-Poisson system. Math. Nach. 292, 1–32 (2019)

    MATH  Google Scholar 

  41. Zhao, F.K., Ding, Y.H.: Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal. 70, 921–935 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, J., Qin, W.P., Zhao, F.K.: Multiple solutions for a class of nonperiodic Dirac equations with vector potentials. Nonlinear Anal. 75, 5589–5600 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, J., Tang, X. H., Zhang, W.: Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013)

  44. Zhang, J., Tang, X.H., Zhang, W.: Ground states for nonlinear Maxwell-Dirac system with magnetic field. J. Math. Anal. Appl. 421, 1573–1586 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, J., Tang, X.H., Zhang, W.: Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system. Nonlinear Anal. 127, 298–311 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, J., Tang, X.H., Zhang, W.: Ground state solutions for a class of nonlinear Maxwell-Dirac system. Topol. Meth. Nonl. Anal. 46, 785–798 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, J., Zhang, W., Xie, X.L.: Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Commu. Pure Appl. Anal. 15, 599–622 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Zhao, L.G., Zhao, F.K.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Zelati, V.C., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4, 693–727 (1991)

    MathSciNet  MATH  Google Scholar 

  50. Zelati, V. Coti, Rabinowitz, P. H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^{N}\), Comm. Pure Appl. Math., 45, 1217-1269 (1992)

Download references

Acknowledgements

The author would like to thank the referees for their careful reading, critical comments and helpful suggestions, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Liliane Maia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhassine, A. Existence of ground states solutions for Dirac-Poisson systems. São Paulo J. Math. Sci. 17, 978–993 (2023). https://doi.org/10.1007/s40863-022-00284-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-022-00284-1

Keywords

AMS subject classification

Navigation