Skip to main content
Log in

Diversity and copper resistance of Xanthomonas affecting citrus

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Since citrus canker was first described in the early 1900’s, four major types and three species of pathogenic xanthomonads associated to citrus were identified based on the characteristic symptoms and host range. Type A, caused by X. citri subsp. citri, develops typical raised cankered lesions and is pathogenic on most commercial citrus species and cultivars. Types B and C are caused by X. citri pv. aurantifolii which elicits canker lesions. Besides the typical type A, the more aggressive and most widely spread type, other subtypes have been described, such as type A*, type Aw, type A-Manatee, type A-Miami, type A-minus pthA, and type-A etrog. The type B strains are found only in Argentina and are more pathogenic on lemon and less aggressive on sweet orange, tangerines and grapefruit. The type C strains are found only in Brazil and are pathogenic only on Key lime. X. alfalfae subsp. citrumelonis, formerly known as type E, causes citrus bacterial spot and is more aggressive on trifoliate citrus and its hybrids. Lesions caused by citrus bacterial spot are flat or sunken and not raised. Several subtypes of X. citri subsp. citri have also been identified. Besides the differences in pathogenicity, xanthomonads may also vary in their sensitivity to copper. Copper resistance has been reported for strains of X. citri subsp. citri and X. alfalfae subsp. citrumelonis and is conferred by the gene clusters copLAB or copABCD. Resistance to copper has serious implications for the use of copper-based bactericides, which are the most important chemicals for the control of diseases caused by Xanthomonas on citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ah-You N, Gagnevin L, Grimont PA, Brisse S, Nesme X, Chiroleu F, Ngoc LBT, Jouen E, Lefeuvre P, Verniere C, Pruvost O (2009) Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. International Journal of Systematic and Evolutionary Microbiology 59:306–318

    CAS  PubMed  Google Scholar 

  • Alvarez A, Benedict A, Mizumoto C, Pollard L, Civerolo E (1991) Analysis of Xanthomonas campestris pv. citri and X. c. citrumelo with monoclonal antibodies. Phytopathology 81:857–865

    Google Scholar 

  • Arguello JM, Raimunda D, Padilla-Benavides T (2013) Mechanisms of copper homeostasis in bacteria. Frontiers in Cellular and Infection Microbiology 3:73

    PubMed  PubMed Central  Google Scholar 

  • Balogh B, Dickstein ER, Jones JB, Canteros BI (2013) Narrow host range phages associated with citrus canker lesions in Florida and Argentina. European Journal of Plant Pathology 135:253–264

    Google Scholar 

  • Basim H, Minsavage GV, Stall RE, Wang JF, Shanker S, Jones JB (2005) Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. Vesicatoria. Applied and Environmental Microbiology 71:8284–8291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behlau F, Belasque J Jr, Bergamin Filho A, Graham JH, Leite RP, Gottwald T (2008) Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection 27:807–813

    CAS  Google Scholar 

  • Behlau F, Belasque J Jr, Graham JH, Leite RP (2010) Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees. Crop Protection 29:300–305

    CAS  Google Scholar 

  • Behlau F, Canteros BI, Minsavage GV, Jones JB, Graham JH (2011) Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology 77:4089–4096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behlau F, Canteros BI, Jones JB, Graham JH (2012a) Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp citri. European Journal of Plant Pathology 133:949–963

    CAS  Google Scholar 

  • Behlau F, Jones JB, Myers ME, Graham JH (2012b) Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. European Journal of Plant Pathology 132:259–270

    Google Scholar 

  • Behlau F, Hong JC, Jones JB, Graham JH (2013) Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology 103:409–418

    CAS  PubMed  Google Scholar 

  • Behlau F, Gochez AM, Lugo AJ, Elibox W, Minsavage GV, Potnis N, White FF, Ebrahim M, Jones JB, Ramsubhag A (2017) Characterization of a unique copper resistance gene cluster in Xanthomonas campestris pv. campestris isolated in Trinidad, West Indies. European Journal of Plant Pathology 147:671–681

    CAS  Google Scholar 

  • Berger EW (1914) Citrus canker in the Gulf coast country, with notes on the extent of citrus culture in the localities visited. Proceedings of the Florida State Horticultural Society 27:120–127

    Google Scholar 

  • Bitancourt A (1957) O Cancro cítrico. O Biologico 23:110–111

  • Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology 14:320–330

    CAS  PubMed  Google Scholar 

  • Brunings A, Gabriel D (2003) Xanthomonas citri: breaking the surface. Molecular Plant Pathology 4:141–157

    CAS  PubMed  Google Scholar 

  • Bui TN, Vernière C, Jarne P, Brisse S, Guérin F, Boutry S, Gagnevin L, Pruvost O (2009) From local surveys to global surveillance: three high-throughput genotyping methods for epidemiological monitoring of Xanthomonas citri pv. citri pathotypes. Applied and Environmental Microbiology 75:1173–1184

    PubMed  Google Scholar 

  • Canteros BI (1984) Disminuye la infección de cancrosis en los montes cítricos. Sintesis Tecnologica no. 6 p 2

  • Canteros BI (1999) Copper resistance in Xanthomonas campestris pv. citri. In: Mahadevan A (ed) Plant pathogenic bacteria. Proceedings of the International Society of Bacteriology. Centre for Advanced Study in Botany, University of Madras, Chennai, pp 455–459

    Google Scholar 

  • Canteros BI (2005) Ecología de la cancrosis de los citrus en Argentina. XIII Congreso Latinoamericano de Fitopatología y III Taller de la Asociación Argentina de Fitopatólogos, Villa Carlos Paz, Cordoba, Argentina

  • Canteros BI, Zagory D, Stall RE (1985) A medium for cultivation of the B-strain of Xanthomonas campestris pv. citri, cause of cancrosis B in Argentina and Uruguay. Plant Disease 69:122–123

    Google Scholar 

  • Canteros BI, Hermosís F, Solíz JA, Benítez R, Gochez AM (2011). Bacteriocinas producidas por cepas grupo A contra cepas grupo B de Xanthomonas axonopodis pv. citri causantes de cancrosis de los citrus. Congreso Argentino de Fitopatología. 2. Mar del Plata, Buenos Aires

  • Chakravarti B, Sarma B, Jain K, Prasad C (1984) A bacterial leaf spot of Bael (Aegle marmelos Correa) in Rajasthan and revived name of the bacterium [wood apple, India]. Short communication. Current Science 53

  • Chiesa MA, Siciliano MF, Ornella L, Roeschlin RA, Favaro MA, Delgado NP, Sendín LN, Orce IG, Ploper LD, Vojnov AA, Vacas JG, Filippone MP, Castagnaro AP, Marano MR (2013) Characterization of a variant of Xanthomonas citri subsp. citri that triggers a host-specific defense response. Phytopathology 103:555–564

    CAS  PubMed  Google Scholar 

  • Civerolo E (1985) Indigenous plasmids in Xanthomonas campestris pv. citri. Phytopathology 75:524–528

    CAS  Google Scholar 

  • Condado C (1942) Cancrosis del limonero. INTA, Bella Vista

    Google Scholar 

  • Constantin E, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, Cottyn B (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology 65:792–806

    CAS  Google Scholar 

  • Cook A (1988) Association of citrus canker pustules with leaf miner tunnels in North-Yemen. Plant Disease 72:546–546

    Google Scholar 

  • Cooksey DA (1990) Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology 28:201–219

    CAS  Google Scholar 

  • Cooksey DA (1993) Copper uptake and resistance in bacteria. Molecular Microbiology 7:1–5

    CAS  PubMed  Google Scholar 

  • Cooksey DA, Azad HR (1992) Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads. Applied and Environmental Microbiology 58:274–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Applied and Environmental Microbiology 68:1257–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubero J, Graham JH (2004) The leucine-responsive regulatory protein (lrp) gene for characterization of the relationship among Xanthomonas species. International Journal of Systematic and Evolutionary Microbiology 54:429–437

    CAS  PubMed  Google Scholar 

  • Da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, do Amaral AM, Bertolini MC, LEA C, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Clapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, CFM M, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, dos Santos MT, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    PubMed  Google Scholar 

  • Das A (2003) Citrus canker-a review. Journal of Applied Horticultre 5:52–60

    Google Scholar 

  • Derso E, Vernière C, Pruvost O (2009) First report of Xanthomonas citri pv. Citri-a* causing citrus canker on lime in Ethiopia. Plant Disease 93:203–203

    CAS  PubMed  Google Scholar 

  • Dickstein E, Jones J, Sun X, Jones D (2005) Identification of citrus canker (Xanthomonas axonopodis pv. citri) and related strains using ribotyping and fatty acid analysis. Phytopathology 95:S25

    Google Scholar 

  • Doidge EM (1917) A bacterial spot of citrus. The Annals of Applied Biology 3:53–81

    Google Scholar 

  • Dopson R (1964) The eradication of citrus canker. Plant Disease Report 48:30–31

    Google Scholar 

  • Dowson D (1939) On the systematic position and generic names of the gram negative bacterial plant pathogens. Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten 100:177–193

  • Egel D, Graham J, Stall RE (1991) Genomic relatedness of Xanthomonas campestris strains causing diseases of citrus. Applied and Environmental Microbiology 57:2724–2730

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Yacoubi B, Brunings A, Yuan Q, Shankar S, Gabriel D (2007) In planta horizontal transfer of a major pathogenicity effector gene. Applied and Environmental Microbiology 73:1612–1621

    PubMed  PubMed Central  Google Scholar 

  • Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiological Research 159:425–437

    CAS  PubMed  Google Scholar 

  • Fawcett HS (1936) Citrus diseases and their control. McGraw-Hill Book Co. Inc., New York, pp 237–249

    Google Scholar 

  • Fawcett HS, Bitancourt AA (1937) Relatorio sobre as doenças dos Citrus nos estados de Pernambuco, Bahia, São Paulo e Rio Grande do Sul. Rodriguesia 3:213–236

    Google Scholar 

  • Fawcett HS, Jenkins A (1933) Records of citrus canker from herbarium specimens of genus Citrus in England and the United States. Phytopathology 23:820–824

    Google Scholar 

  • Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB (2018) Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Molecular Plant Pathology 19:1302–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca NP, Patané JSL, Varani AM, Felestrino ÉB, Caneschi WL, Sanchez AB, Cordeiro IF, Lemes CGC, Assis RAB, Garcia CCM, Belasque J Jr, Martins J Jr, Facincani AP, Ferreira RM, Jaciani FJ, de Almeida NF, Ferro JA, Moreira LM, Setubal JC (2019) Analyses of seven new genomes of Xanthomonas citri pv. aurantifolii strains, causative agents of citrus canker B and C, show a reduced repertoire of pathogenicity-related genes. Frontiers in Microbiology 10:2361

    PubMed  PubMed Central  Google Scholar 

  • Gabriel D, Kingsley M, Hunter J, Gottwald T (1989) Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex smith) to species and reclassification of all X. campestris pv. Citri strains. International Journal of Systematic Bacteriology 39:14–22

    Google Scholar 

  • Gochez AM, Huguet-Tapia JC, Minsavage GV, Shantaraj D, Jalan N, Strauß A, Lahaye T, Wang N, Canteros B, Jones JB, Potnis N (2018) Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics 19:16

    PubMed  PubMed Central  Google Scholar 

  • Gordon JL, Lefeuvre P, Escalon A, Barbe V, Cruveiller S, Gagnevin L, Pruvost O (2015) Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genomics 16:1

    Google Scholar 

  • Goto M, Takahashi T, Messina MA (1980) A comparative study of the strains of Xanthomonas campestris pv. citri isolated from citrus canker in Japan and cancrosis B in Argentina. Annals of the Phytopathological Society of Japan 46:329–338

    Google Scholar 

  • Gotuzzo EA, Rossi L (1967) Cancrosis de los citrus. In INTA (Ed.), Patologia Vegetal Buenos Aires. pp. 69-81

  • Graham JH, Gottwald T (1990) Variation in aggressiveness of Xanthomonas campestris pv. citrumelo associated with citrus bacterial spot in Florida citrus nurseries. Phytopathology 80:190–196

    Google Scholar 

  • Graham JH, Gottwald T (1991) Research perspectives on eradication of citrus bacterial diseases in Florida. Plant Disease 75:1193–1200

    Google Scholar 

  • Graham JH, Gottwald T, Riley T, Bruce M (1992) Susceptibility of citrus fruit to bacterial spot and citrus canker. Phytopathology 82:452–457

    Google Scholar 

  • Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology 5:1–15

    PubMed  Google Scholar 

  • Graham JH, Dewdney M, Myers M (2010) Streptomycin and copper formulations for control of citrus canker on grapefruit. Proceedings of the Florida State Horticultural Society 123:92–99

    Google Scholar 

  • Graham JH, Myers M, Gottwald T, Bock C (2016) Effect of windbreaks on wind speed and canker incidence on grapefruit. Citrus Research and Technology 37:173–181

    Google Scholar 

  • Hartung J, Civerolo E (1987) Genomic fingerprints of Xanthomonas campestris pv. citri strains from Asia, South America, and Florida. Phytopathology 77:282–285

    CAS  Google Scholar 

  • Hartung JS, Civerolo E (1989) Restriction fragment length polymorphisms distinguish Xanthomonas campestris strains isolated from Florida citrus nurseries from X. c. Pv. citri. Phytopathology 79:793–799

    Google Scholar 

  • Hasse CH (1915) Pseudomonas citri, the cause of citrus canker. A preliminary report. Journal of Agricultural Research 4:97–100

    Google Scholar 

  • Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC (2011) Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. Journal of Agricultural and Food Chemistry 59:9290–9302

    CAS  PubMed  Google Scholar 

  • Jaciani F, Destefano S, Rodrigues Neto J, Belasque J Jr (2009) Detection of a new bacterium related to Xanthomonas fuscans subsp. aurantifolii infecting Swingle citrumelo in Brazil. Plant Disease 93:1074

    CAS  PubMed  Google Scholar 

  • Jalan N, Aritua V, Kumar D, Yu F, Jones JB, Graham JH, Setubal JC, Wang N (2011) Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. Journal of Bacteriology 193:6342–6357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013) Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14:551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi M (1985) Citrus canker: the world situation. In: Timmer LW (ed) Citrus canker: an international perspective, University of Florida. Institute of Food and Agricultural Science, Gainesville, pp 2–7

    Google Scholar 

  • Lee Y, Hendson M, Panopoulos N, Schroth M (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology 176:173–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite RP, Egel D, Stall RE (1994) Genetic analysis of hrp-related DNA sequences of Xanthomonas campestris strains causing diseases of citrus. Applied and Environmental Microbiology 60:1078–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WU, Song Q, Brlansky RH, Hartung JS (2007) Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens. PNAS 104:18427–18432

    CAS  PubMed  Google Scholar 

  • Lin H, Hsu S, Hwang A, Tzeng K (2005) Phenotypic and genetic characterization of novel strains of Xanthomonas axonopodis pv. citri which induce atypical symptoms on citrus leaves in Taiwan. Plant Pathology Bulletin 14:227–238

    CAS  Google Scholar 

  • Lin HC, Chu MK, Lin YC, Deng WL, Chang H, Hsu ST, Tzeng KC (2011) A single amino acid substitution in PthA of Xanthomonas axonopodis pv. citri altering canker formation on grapefruit leaves. European Journal of Plant Pathology 130:143–154

    CAS  Google Scholar 

  • Lin HC, Chang YA, Chang H (2013) A pthA homolog from a variant of Xanthomonas axonopodis pv. citri enhances virulence without inducing canker symptom. European Journal of Plant Pathology 137:677–688

    CAS  Google Scholar 

  • Marin T, Galvanin A, Lanza F, Behlau F (2019) Description of copper tolerant Xanthomonas citri subsp. citri and genotypic comparison with sensitive and resistant strains. Plant Pathology 68:1088–1098

    CAS  Google Scholar 

  • Mellano VJ, Cooksey DA (1988) Development of host range mutants of Xanthomonas campestris pv. translucens. Applied and Environmental Microbiology 54:884–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messina M (1980). Los métodos serológicos en el estudio de la bacteria que produce la cancrosis cítrica en la Argentina. 4. La técnica de inmunofluorescencia. Su aplicación como elemento de diagnósticos de laboratorio. 5° Congreso Argentino de Citricultura, Concordia, Entre Rios, Argentina

  • Mohammadi M, Mirzaee M, Rahimian H (2001) Physiological and biochemical characteristics of Iranian strains of Xanthomonas axonopodis pv. citri, the causal agent of citrus bacterial canker disease. Journal of Phytopathology 149:65–75

    CAS  Google Scholar 

  • Moreira L, Almeida N, Potnis N, Digiampietri L, Adi S, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC (2010) Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics 11:238

    PubMed  PubMed Central  Google Scholar 

  • Namekata T (1971). Estudos comparativos entre Xanthomonas citri (Hasse) Dow., agente causal do cancro cítrico e Xanthomonas citri (Hasse) Dow., n.f.sp. aurantifolia, agente causal da cancrose do limoeiro Galego. Piracicaba, 1971. 65p. [Tese (Doutorado) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo]

  • Namekata T, Oliveira AD (1972) Comparative serological studies between Xanthomonas citri and a bacterium causing canker on Mexican lime. Proceeding of the third Internacional conference on plant pathogenic Bacteria (ed. HP Maas Geesteranus), Centre for Agricultural Publication and Documentation, Wageningen, the Netherlands

  • Ngoc LBT, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O (2010) Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. International Journal of Systematic and Evolutionary Microbiology 60:515–525

    CAS  Google Scholar 

  • Nociti LAS, Camargo M, Rodrigues Neto J, Francischini FJB, Belasque J Jr (2006) Agressividade de linhagens de Xanthomonas axonopodis pv. aurantifolii Tipo C em lima ácida 'Galego'. Fitopatologia Brasileira 31:140–146

    Google Scholar 

  • Olson B, Jones A (1983) Reduction of Pseudomonas syringae pv. morsprunorum on Montmorency sour cherry with copper and dynamics of the copper residues. Phytopathology 73:1520–1525

    CAS  Google Scholar 

  • Palm ME, Civerolo EL (1994) Isolation, pathogenicity, and partial host range of Alternaria limicola, causal agent of mancha foliar de los citricos in Mexico. Plant Disease 78:879–883

    Google Scholar 

  • Patel M, Allayyanavaramath S, Kulkarni Y (1953) Bacterial shot-hole and fruit canker of Aegle marmelos Correa. Current Science 22:216–217

    Google Scholar 

  • Pruvost O, Hartung J, Civerolo E, Dubois C, Perrier X (1992) Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology 82:485–490

    CAS  Google Scholar 

  • Richard D, Boyer C, Vernière C, Canteros BI, Lefeuvre P, Pruvost O (2017a) Complete genome sequences of six copper-resistant Xanthomonas citri pv. citri strains causing Asiatic citrus canker, obtained using long-read technology. Genome Announcements 5:e00010–e00017

    PubMed  PubMed Central  Google Scholar 

  • Richard D, Ravigné V, Rieux A, Facon B, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P (2017b) Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Molecular Ecology 26:2131–2149

    CAS  PubMed  Google Scholar 

  • Rodríguez G, Garza L, Stapleton J, Civerolo E (1985) Citrus bacteriosis in Mexico. Plant Disease 69:808–810

    Google Scholar 

  • Roeschlin RA, Uviedo F, García L, Molina MC, Favaro MA, Chiesa MA, Tasselli S, Franco-Zorrilla JM, Forment J, Gadea J, Marano MR (2019) PthA4AT, a 7.5-repeats transcription activator-like (TAL) effector from Xanthomonas citri ssp. citri, triggers citrus canker resistance. Molecular Plant Pathology 20

  • Rossetti V (1977) Citrus canker in Latin America: a review. Proceedings of the International Society of Citriculture 3:918–924

    Google Scholar 

  • Rybak M, Minsavage G, Stall R, Jones J (2009) Identification of Xanthomonas citri ssp. citri host specificity genes in a heterologous expression host. Molecular Plant Pathology 10:249–262

    CAS  PubMed  Google Scholar 

  • Scapin MS, Behlau F, Scandelai LHM, Fernandes RS, Silva Junior GJ, Ramos HH (2015) Tree-row-volume-based sprays of copper bactericide for control of citrus canker. Crop Protection 77:119–126

    CAS  Google Scholar 

  • Schaad N, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv malvacearum (ex smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and "var. fuscans" of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Systematic and Applied Microbiology 28:494–518

  • Schaad NW, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK (2006) Emended classification of xanthomonad pathogens on citrus. Systematic and Applied Microbiology 29:690–695

    PubMed  Google Scholar 

  • Schubert T, Sun X (1996) Bacterial citrus canker. Plant Pathology Circular 377:6

    Google Scholar 

  • Schubert TS, Rizvi SA, Sun X, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida-again. Plant Disease 85:340–356

    PubMed  Google Scholar 

  • Stall RE, Seymour CP (1983) Canker, a threat to citrus in the Gulf-coast states. Plant Disease 67:581–585

    Google Scholar 

  • Stall RE, Marco G, Canteros BI (1979) Cancrosis de los citrus. Informe Tecnico N°1. Bella Vista, Corrientes, Argentina: INTA. 64 p

  • Sun X, Stall R, Jones J, Cubero J, Gottwald T, Graham J, Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH, Sutton BD (2004) Detection and characterization of a new strain of citrus canker bacteria from key Mexican lime and Alemow in South Florida. Plant Disease 88:1179–1188

    CAS  PubMed  Google Scholar 

  • Sundin G, Jones A, Fulbright D (1989) Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology 79:861–865

    CAS  Google Scholar 

  • Teixeira EC, Oliveira JCF, Novo MTM, Bertolini MC (2008) The copper resistance operon copAB from Xanthomonas axonopodis pv. citri: gene inactivation results in copper sensitivity. Microbiology 154:402–412

    CAS  PubMed  Google Scholar 

  • Vauterin L, Swings J, Kersters K, Gillis M, Mew T, Schroth M, Palleroni NJ, Hildebrand DC, Stead DE, Civerolo EL, Hayward AC, Maraîte H, Stall RE, Vidaver AK, Bradbury JF (1990) Towards an improved taxonomy of Xanthomonas. International Journal of Systematic Bacteriology 40:312–316

    CAS  Google Scholar 

  • Vauterin L, Yang P, Hoste B, Vancanneyt M, Civerolo E, Swings J, Kersters K (1991) Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel-electrophoresis of proteins, fatty-acid analysis, and DNA-DNA hybridization. International Journal of Systematic Bacteriology 41:535–542

    CAS  Google Scholar 

  • Vauterin L, Hoste B, Kersters K, Swings J (1995) Reclassification of xanthomonas. International Journal of Systematic Bacteriology 45:472–489

    CAS  Google Scholar 

  • Vauterin L, Yang P, Alvarez A, Takikawa Y, Roth DA, Vidaver AK, Stall RE, Kersters K, Swings J (1996a) Identification of non-pathogenic Xanthomonas strains associated with plants. Systematic and Applied Microbiology 19:96–105

    Google Scholar 

  • Vauterin L, Yang P, Swings J (1996b) Utilization of fatty acid methyl esters for the differentiation of new Xanthomonas species. International Journal of Systematic Bacteriology 46:298–304

    CAS  Google Scholar 

  • Verniere C, Pruvost O, Civerolo E, Gambin O, Jacquemoud-Collet J, Luisetti J (1993) Evaluation of the biolog substrate utilization system to identify and assess metabolic variation among strains of Xanthomonas campestris pv. citri. Applied and Environmental Microbiology 59:243–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verniere C, Hartung J, Pruvost O, Civerolo E, Alvarez A, Maestri P, Luisetti J (1998) Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. European Journal of Plant Pathology 104:477–487

    Google Scholar 

  • Voloudakis AE, Reignier TM, Cooksey DA (2005) Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Applied and Environmental Microbiology 71:782–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young J, Dye D, Bradbury J, Panagopoulos C, Robbs C (1978) A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21:153–177

    Google Scholar 

  • Young J, Bradbury J, Gardan L, Gvozdyak R, Stead D, Takikawa Y, Vidaver A (1991) Comment on the reinstatement of Xanthomonas citri (ex Hasse 1915) Gabriel et al. 1989 and X. phaseoli (ex smith 1897) Gabriel et al. 1989: indication of the need for minimal standards for the genus Xanthomonas. International Journal of Systematic and Evolutionary Microbiology 41:172–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FB and AG performed the literature search and wrote the manuscript. FB, AG, JBJ critically revised the text. FB performed the final editing and formatting.

Corresponding author

Correspondence to Franklin Behlau.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Reaction of Duncan grapefruit leaves 14 days after infiltration inoculation of a typical type A strain (A306), its pthA4 mutant (A306ΔpthA4), an unique type A minus pthA4 strain (Xc-2090), and its complementation with pthA4 (Xc-2090:pthA4). Canker-like symptoms were observed only for A306 and Xc-2090:pthA4. A306ΔpthA4 and Xc-2090 did not develop erumpent lesions but a weaker undetermined reaction. Bacterial suspensions were infiltrated at 5 × 105 CFU/mL. Knock out of gene pthA4 in A306 was performed using vector pOK1. Xc-2090:pthA4 is a transconjugant carrying pLAFR3:pthA4. (JPG 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behlau, F., Gochez, A.M. & Jones, J.B. Diversity and copper resistance of Xanthomonas affecting citrus. Trop. plant pathol. 45, 200–212 (2020). https://doi.org/10.1007/s40858-020-00340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00340-1

Keywords

Navigation