Skip to main content

Advertisement

Log in

Opportunities for Therapeutic Intervention During Machine Perfusion

  • Tissue Engineering and Regeneration (J Wertheim, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is a vast discrepancy between the number of patients waiting for organ transplantation and the available donor organs. Ex situ machine perfusion (MP) has emerged in an effort to expand the donor pool, by improving organ preservation, providing diagnostic information, and more recently, acting as a platform for organ improvement. This article reviews the current status of MP with a focus on its role in organ pre-conditioning and therapeutic interventions prior to transplantation.

Recent Findings

MP has allowed longer organ preservation compared to conventional static cold storage and allowed the use of organs that might otherwise have been discarded. Moreover, experimental studies have investigated the role of MP in reducing ischemia reperfusion injury of lungs, kidneys, and livers by applying mesenchymal stem cells (MSCs), anti-inflammatory agents, cytotopic anti-coagulants, and defatting cocktails.

Summary

MP has opened a new era in the field of organ transplantation and tissue medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

OPTN:

Organ Procurement and Transplantation Network

UNOS:

United Network for Organ Sharing

ECD:

Extended criteria donor

DCD:

Donation after circulatory death

SCS:

Static cold storage

MP:

Machine perfusion

HMP:

Hypothermic machine perfusion

SNMP:

Subnormothermic machine perfusion

NMP:

Normothermic machine perfusion

NRP:

Normothermic regional perfusion

COR:

Controlled oxygenated rewarming

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

PNF:

Primary non-function

EAD:

Early allograft dysfunction

HCV:

Hepatitis C

IRI:

Ischemia reperfusion injury

ROS:

Reactive oxygen species

NO:

Nitric oxide

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

CVR:

Coronary vascular resistance

MVO2 :

Myocardial oxygen consumption

PaO2/FiO2 :

Partial pressure of oxygen/fraction of inspired oxygen

CFTR:

Cystic fibrosis transmembrane conductance regulator

APRV:

Airway pressure release ventilation

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

ET-1:

Endothelin-1

KIM-1:

Kidney injury molecule-1

NGAL:

Neutrophil gelatinase-associated lipocalin

MSCs:

Mesenchymal stem cells

TG:

Triglyceride

FFA:

Free fatty acids

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Orman ES, Mayorga ME, Wheeler SB, Townsley RM, Toro-Diaz HH, Hayashi PH, et al. Declining liver graft quality threatens the future of liver transplantation in the united states. Liver Transpl. 2015;21:1040–50. doi:10.1002/lt.24160.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Graham JA, Guarrera JV. “Resuscitation” of marginal liver allografts for transplantation with machine perfusion technology. J Hepatol. 2014;61:418–31. doi:10.1016/j.jhep.2014.04.019.

    Article  PubMed  Google Scholar 

  3. Sutton ME, Op den Dries S, Karimian N, Weeder PD, de Boer MT, Wiersema-Buist J, et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PLoS One. 2014;9:e110642. doi:10.1371/journal.pone.0110642.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hosgood SA, Nicholson ML. An assessment of urinary biomarkers in a series of declined human kidneys measured during ex-vivo normothermic kidney perfusion. Transplantation. 2016; doi:10.1097/TP.0000000000001504.

    PubMed  Google Scholar 

  5. Minor T, Sutschet K, Witzke O, Paul A, Gallinat A. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming. Eur J Clin Invest. 2016; doi:10.1111/eci.12687.

    PubMed  Google Scholar 

  6. Barlow AD, Hamed MO, Mallon DH, Brais RJ, Gribble FM, Scott MA, et al. Use of ex vivo normothermic perfusion for quality assessment of discarded human donor pancreases. Am J Transplant. 2015;15:2475–82. doi:10.1111/ajt.13303.

    Article  CAS  PubMed  Google Scholar 

  7. Babiker FA, Al-Jarallah A, Joseph S. Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine. J Physiol Biochem. 2016; doi:10.1007/s13105-016-0535-z.

    Google Scholar 

  8. Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando). 2012;26:103–14. doi:10.1016/j.trre.2011.10.006.

    Article  Google Scholar 

  9. Narayan RR, Pancer NE, Loeb BW, Oki K, Crouch A, Backus S, et al. A novel device to preserve intestinal tissue ex-vivo by cold peristaltic perfusion. Conf Proc IEEE Eng Med Biol Soc 2014: 3118–3121. Doi: 10.1109/EMBC.2014.6944283.

  10. Michel SG, La Muraglia II GM, Madariaga ML, Titus JS, Selig MK, Farkash EA, et al. Twelve-hour hypothermic machine perfusion for donor heart preservation leads to improved ultrastructural characteristics compared to conventional cold storage. Ann Transplant. 2015;20:461–8. doi:10.12659/AOT.893784.

    Article  PubMed  Google Scholar 

  11. Collins C, Tzima E. Hemodynamic forces in endothelial dysfunction and vascular aging. Exp Gerontol. 2011;46:185–8. doi:10.1016/j.exger.2010.09.010.

    Article  CAS  PubMed  Google Scholar 

  12. Chatauret N, Coudroy R, Delpech PO, Vandebrouck C, Hosni S, Scepi M, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion’s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant. 2014;14:2500–14. doi:10.1111/ajt.12904.

    Article  CAS  PubMed  Google Scholar 

  13. Guarrera JV, Henry SD, Samstein B, Reznik E, Musat C, Lukose TI, et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant 2014. Doi: 10.1111/ajt.12958.

  14. Van der Plaats A, 't Hart NA, Verkerke GJ, Leuvenink HG, Ploeg RJ, Rakhorst G. Hypothermic machine preservation in liver transplantation revisited: concepts and criteria in the new millennium. Ann Biomed Eng 2004: 32:623–631.

    Article  PubMed  Google Scholar 

  15. Thuillier R, Allain G, Celhay O, Hebrard W, Barrou B, Badet L, et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. J Surg Res. 2013;184:1174–81. doi:10.1016/j.jss.2013.04.071.

    Article  PubMed  Google Scholar 

  16. Kron P, Schlegel A, de Rougemont O, Oberkofler CE, Clavien PA, Dutkowski P. Short, cool, and well oxygenated—HOPE for kidney transplantation in a rodent model. Ann Surg. 2016;264:815–22. doi:10.1097/SLA.0000000000001766.

    Article  PubMed  Google Scholar 

  17. Schlegel A, Graf R, Clavien PA, Dutkowski P. Hypothermic oxygenated perfusion (HOPE) protects from biliary injury in a rodent model of DCD liver transplantation. J Hepatol. 2013;59:984–91. doi:10.1016/j.jhep.2013.06.022.

    Article  PubMed  Google Scholar 

  18. Op den Dries S, Sutton ME, Karimian N, de Boer MT, Wiersema-Buist J, Gouw AS, et al. Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death. PLoS One. 2014;9:e88521. doi:10.1371/journal.pone.0088521.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dutkowski P, Schlegel A, de Oliveira M, Mullhaupt B, Clavien PA. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol. 2014;60:765–72. doi:10.1016/j.jhep.2013.11.023.

    Article  PubMed  Google Scholar 

  20. Dutkowski P, Polak WG, Muiesan P, Schlegel A, Verhoeven CJ, Scalera I, et al. First comparison of hypothermic oxygenated PErfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015;262:764–71. doi:10.1097/SLA.0000000000001473.

    Article  PubMed  Google Scholar 

  21. • Hosgood SA, Saeb-Parsy K, Hamed MO, Nicholson ML. Successful transplantation of human kidneys deemed untransplantable but resuscitated by ex vivo normothermic machine perfusion. Am J Transplant. 2016;16:3282–5. doi:10.1111/ajt.13906. This study reports the first clinical transplantation of a kidney that was initially declined for transplantation but after resuscitation and evaluation by ex situ NMP was deemed suitable for transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Watson CJ, Randle LV, Kosmoliaptsis V, Gibbs P, Allison M, Butler AJ. 26-hour storage of a declined liver before successful transplantation using ex vivo normothermic perfusion. Ann Surg 2016. Doi: 10.1097/SLA.0000000000001834. This study reports the longest ever extracorporeal preservation of a donor liver graft by using ex situ NMP. The liver was successfully transplanted after viability assessment during ex situ NMP.

  23. • Wallinder A, Ricksten SE, Hansson C, Riise GC, Silverborn M, Liden H, et al. Transplantation of initially rejected donor lungs after ex vivo lung perfusion. J Thorac Cardiovasc Surg. 2012;144:1222–8. doi:10.1016/j.jtcvs.2012.08.011. This study reports transplantation of donor lungs that were initially declined for transplantation but were resuscitated during ex situ MP.

    Article  PubMed  Google Scholar 

  24. Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant. 2014;14:1400–9. doi:10.1111/ajt.12727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White CW, Ambrose E, Muller A, Li Y, Le H, Hiebert B, et al. Assessment of donor heart viability during ex vivo heart perfusion. Can J Physiol Pharmacol. 2015;93:893–901. doi:10.1139/cjpp-2014-0474.

    Article  CAS  PubMed  Google Scholar 

  26. Bruinsma BG, Sridharan GV, Weeder PD, Avruch JH, Saeidi N, Ozer S, et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci Rep. 2016;6:22415. doi:10.1038/srep22415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watson CJ, Kosmoliaptsis V, Randle LV, Russell NK, Griffiths WJ, Davies S, et al. Preimplant normothermic liver perfusion of a suboptimal liver donated after circulatory death. Am J Transplant. 2016;16:353–7. doi:10.1111/ajt.13448.

    Article  CAS  PubMed  Google Scholar 

  28. • Perera T, Mergental H, Stephenson B, Roll GR, Cilliers H, Liang R, et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl. 2016;22:120–4. doi:10.1002/lt.24369. This study reports the first successful transplantation of a marginal donor liver that was resuscitated during ex situ NMP.

    Article  PubMed  Google Scholar 

  29. Tolboom H, Makhro A, Rosser BA, Wilhelm MJ, Bogdanova A, Falk V. Recovery of donor hearts after circulatory death with normothermic extracorporeal machine perfusion. Eur J Cardiothorac Surg. 2015;47:173–9. doi:10.1093/ejcts/ezu117.

    Article  PubMed  Google Scholar 

  30. Minor T, Efferz P, Fox M, Wohlschlaeger J, Luer B. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 2013;13:1450–60. doi:10.1111/ajt.12235.

    Article  CAS  PubMed  Google Scholar 

  31. Hoyer DP, Mathe Z, Gallinat A, Canbay AC, Treckmann JW, Rauen U, et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation. 2016;100:147–52. doi:10.1097/TP.0000000000000915.

    Article  CAS  PubMed  Google Scholar 

  32. •• Machuca TN, Hsin MK, Ott HC, Chen M, Hwang DM, Cypel M, et al. Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 2013;188:878–80. doi:10.1164/rccm.201302-0368LE. This study reports a successful example of organ treatment using ex situ MP. The donor lung that was initially declined for transplantation due to an embolus was treated by thrombolytics and was then successfully transplanted.

    Article  PubMed  Google Scholar 

  33. Cypel M, Yeung JC, Machuca T, Chen M, Singer LG, Yasufuku K, et al. Experience with the first 50 ex vivo lung perfusions in clinical transplantation. J Thorac Cardiovasc Surg. 2012;144:1200–6. doi:10.1016/j.jtcvs.2012.08.009.

    Article  PubMed  Google Scholar 

  34. Mehaffey JH, Charles EJ, Sharma AK, Money DT, Zhao Y, Stoler MH, et al. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury. J Thorac Cardiovasc Surg 2016. Doi: 10.1016/j.jtcvs.

  35. Nakajima D, Cypel M, Bonato R, Machuca TN, Iskender I, Hashimoto K, et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16:1229–37. doi:10.1111/ajt.13562.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma AK, Laubach VE, Ramos SI, Zhao Y, Stukenborg G, Linden J, et al. Adenosine A2A receptor activation on CD4+ T lymphocytes and neutrophils attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2010;139:474–82. doi:10.1016/j.jtcvs.2009.08.033.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, et al. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res. 1998;80:357–64.

    Article  CAS  PubMed  Google Scholar 

  38. Wagner CE, Pope NH, Charles EJ, Huerter ME, Sharma AK, Salmon MD, et al. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death. J Thorac Cardiovasc Surg. 2016;151:538–45. doi:10.1016/j.jtcvs.2015.07.075.

    Article  CAS  PubMed  Google Scholar 

  39. McAuley DF, Frank JA, Fang X, Matthay MA. Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med. 2004;32:1470–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo T, Chen F, Ohsumi A, Hijiya K, Motoyama H, Sowa T, et al. Beta2-adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. Ann Thorac Surg. 2015;100:480–6. doi:10.1016/j.athoracsur.2015.02.136.

    Article  PubMed  Google Scholar 

  41. Geissler EK. The ONE study compares cell therapy products in organ transplantation: Introduction to a review series on suppressive monocyte-derived cells. Transplant Res 2012: 1:11-1440-1-11. Doi: 10.1186/2047–1440–1-11.

  42. Van Raemdonck D, Neyrinck A, Rega F, Devos T, Pirenne J. Machine perfusion in organ transplantation: a tool for ex-vivo graft conditioning with mesenchymal stem cells? Curr Opin Organ Transplant. 2013;18:24–33. doi:10.1097/MOT.0b013e32835c494f.

    Article  CAS  PubMed  Google Scholar 

  43. Mordant P, Nakajima D, Kalaf R, Iskender I, Maahs L, Behrens P, et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. J Heart Lung Transplant. 2016;35:1245–54.

    Article  PubMed  Google Scholar 

  44. Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun YM, et al. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol Ther. 2012;20:1204–11. doi:10.1038/mt.2012.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwai S, Sakonju I, Okano S, Teratani T, Kasahara N, Yokote S, et al. Impact of ex vivo administration of mesenchymal stem cells on the function of kidney grafts from cardiac death donors in rat. Transplant Proc. 2014;46:1578–84. doi:10.1016/j.transproceed.2013.12.068.

    Article  CAS  PubMed  Google Scholar 

  46. Pushpakumar SB, Perez-Abadia G, Soni C, Wan R, Todnem N, Patibandla PK, et al. Enhancing complement control on endothelial barrier reduces renal post-ischemia dysfunction. J Surg Res. 2011;170:e263–70. doi:10.1016/j.jss.2011.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng X, Zang G, Jiang J, He W, Johnston NJ, Ling H, et al. Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with siRNA cocktail solution. Transplantation. 2016;100:743–52. doi:10.1097/TP.0000000000000960.

    Article  CAS  PubMed  Google Scholar 

  48. Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72:151–6.

    Article  CAS  PubMed  Google Scholar 

  49. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118:183–91.

    Article  CAS  PubMed  Google Scholar 

  50. Tuuminen R, Jouppila A, Salvail D, Laurent CE, Benoit MC, Syrjala S, et al. Dual antiplatelet and anticoagulant APAC prevents experimental ischemia-reperfusion-induced acute kidney injury. Clin Exp Nephrol 2016. Doi: 10.1007/s10157-016-1308-2.

  51. Hamaoui K, Gowers S, Boutelle M, Cook T, Hanna G, Darzi A, et al. Organ pretreatment with cytotopic endothelial localising peptides to ameliorate microvascular thrombosis & perfusion deficits in ex-vivo renal haemo-reperfusion models. Transplantation 2016. Doi: 10.1097/TP.0000000000001437.

  52. Dirchwolf M, Dodge JL, Gralla J, Bambha KM, Nydam T, Hung KW, et al. The corrected donor age for hepatitis C virus-infected liver transplant recipients. Liver Transpl. 2015;21:1022–30. doi:10.1002/lt.24194.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Selzner N, Girgrah N, Lilly L, Guindi M, Selzner M, Therapondos G, et al. The difference in the fibrosis progression of recurrent hepatitis C after live donor liver transplantation versus deceased donor liver transplantation is attributable to the difference in donor age. Liver Transpl. 2008;14:1778–86. doi:10.1002/lt.21598.

    Article  PubMed  Google Scholar 

  54. Goldaracena N, Spetzler VN, Echeverri J, Kaths JM, Cherepanov V, Persson R, et al. Inducing hepatitis C virus resistance after pig liver transplantation—“a proof of concept of liver graft modification using warm ex vivo perfusion”. Am J Transplant 2016. Doi: 10.1111/ajt.14100.

  55. Foster R, Zimmerman M, Trotter JF. Expanding donor options: marginal, living, and split donors. Clin Liver Dis. 2007;11:417–29.

    Article  PubMed  Google Scholar 

  56. Zhang ZB, Gao W, Shi Y, Liu L, Ma N, Chen J, et al. Protective role of normothermic machine perfusion during reduced-size liver transplantation in pigs. Liver Transpl. 2016;22:968–78. doi:10.1002/lt.24453.

    Article  PubMed  Google Scholar 

  57. Dong J, Xia L, Shen H, Bian C, Bao S, Zhang M, et al. Growing a whole porcine liver organ ex situ for six hours without red blood cells or hemoglobin. Am J Transl Res. 2016;8:2562–74.

    PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Nassar A, Farias K, Buccini L, Baldwin W, Mangino M, et al. Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transpl. 2014;20:987–99. doi:10.1002/lt.23906.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Goldaracena N, Echeverri J, Spetzler VN, Kaths JM, Barbas AS, Louis KS, et al. Anti-inflammatory signaling during ex vivo liver perfusion improves the preservation of pig liver grafts before transplantation. Liver Transpl. 2016;22:1573–83. doi:10.1002/lt.24603.

    Article  PubMed  Google Scholar 

  60. McCormack L, Dutkowski P, El-Badry AM, Clavien PA. Liver transplantation using fatty livers: always feasible? J Hepatol. 2011;54:1055–62. doi:10.1016/j.jhep.2010.11.004.

    Article  PubMed  Google Scholar 

  61. Verran D, Kusyk T, Painter D, Fisher J, Koorey D, Strasser S, et al. Clinical experience gained from the use of 120 steatotic donor livers for orthotopic liver transplantation. Liver Transpl. 2003;9:500–5. doi:10.1053/jlts.2003.50099.

    Article  PubMed  Google Scholar 

  62. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology. 2000;32:1280–8.

    Article  CAS  PubMed  Google Scholar 

  63. Nemes B, Gaman G, Polak WG, Gelley F, Hara T, Ono S, et al. Extended-criteria donors in liver transplantation part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol. 2016;10:841–59. doi:10.1586/17474124.2016.1149062.

    Article  CAS  PubMed  Google Scholar 

  64. Bessems M, Doorschodt BM, Kolkert JL, Vetelainen RL, van Vliet AK, Vreeling H, et al. Preservation of steatotic livers: a comparison between cold storage and machine perfusion preservation. Liver Transpl. 2007;13:497–504. doi:10.1002/lt.21039.

    Article  PubMed  Google Scholar 

  65. Okamura Y, Hata K, Tanaka H, Hirao H, Kubota T, Inamoto O, et al. Impact of subnormothermic machine perfusion preservation in severely steatotic rat livers: a detailed assessment in an isolated setting. Am J Transplant 2016. Doi: 10.1111/ajt.14110.

  66. Nativ NI, Yarmush G, So A, Barminko J, Maguire TJ, Schloss R, et al. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl. 2014;20:1000–11. doi:10.1002/lt.23905.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu Q, Berendsen T, Izamis ML, Uygun B, Yarmush ML, Uygun K. Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplant Proc. 2013;45:3209–13. doi:10.1016/j.transproceed.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  68. Pais R, Barritt AST, Calmus Y, Scatton O, Runge T, Lebray P, et al. NAFLD and liver transplantation: current burden and expected challenges. J Hepatol. 2016;65:1245–57. doi:10.1016/j.jhep.2016.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Yeh.

Ethics declarations

Conflict of Interest

Negin Karimian and Heidi Yeh declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Tissue Engineering and Regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, N., Yeh, H. Opportunities for Therapeutic Intervention During Machine Perfusion. Curr Transpl Rep 4, 141–148 (2017). https://doi.org/10.1007/s40472-017-0144-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-017-0144-y

Keywords

Navigation