Skip to main content
Log in

Free vibration characteristics and wave propagation analysis in nonlocal functionally graded cylindrical nanoshell using wave-based method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this article, the free vibration characteristics and wave propagation analysis of functionally graded materials (FGM) cylindrical nanoshell is investigated by a semi-analytical method, wave-based method. The Eringen nonlocal theory and first-order shear deformation shell theory are adopted to establish the model of present systems. First, the calculation accuracy is verified which are compared with the solutions by the presented method with the results in the reported pieces of literature. Then, the free vibration characteristics concerning the nonlocal parameter, thickness to radius ratios, and length to radius ratios are derived, some parameter study examples are established, and some conclusions are obtained. Furthermore, the wave propagation characteristics related to the longitudinal wavenumber and circumferential wave number are proposed. Especially, the wave dispersion relations of wave frequency and phase velocity concerning the influence of nonlocal parameter, power-law exponent, thickness to radius ratios, and wavenumber in various directions are highlighted. The numerical examples conducted that these parameters have an important and obvious influence on the wave propagation characteristic for the wave frequency and phase velocity of nonlocal FGM cylindrical nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MathSciNet  MATH  Google Scholar 

  2. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  3. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  4. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  5. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    Article  MATH  Google Scholar 

  6. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  7. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  8. Tounsi A, Semmah A, Bousahla AA (2013) Thermal Buckling Behavior of Nanobeams Using an Efficient Higher-Order Nonlocal Beam Theory. J Nanomech Micromech 3:37–42

    Article  Google Scholar 

  9. Sahmani S, Ansari R (2011) Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J Mech Sci Technol 25:2365–2375

    Article  Google Scholar 

  10. Lu P (2007) Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory. J Appl Phys 101:073504

    Article  Google Scholar 

  11. Aydogdu M (2009) A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E-low-dimens Syst Nanostruct 41:1651–1655

    Article  Google Scholar 

  12. Anna DRM, Maria L (2014) Free vibration analysis of DWCNTs using CDM and Rayleigh–Schmidt based on nonlocal Euler–Bernoulli beam theory. Sci World J 2014:1–13

    Google Scholar 

  13. Shen HS, Shen L, Zhang CL (2011) Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments. Compos Struct 98:294–302

    Google Scholar 

  14. Shakouri A, Ng TY, Lin RM (2011) Nonlocal plate model for the free vibration analysis of nanoplates with different boundary conditions. J Comput Theor Nanosci 8:2118–2128

    Article  Google Scholar 

  15. Samaei AT, Abbasion S, Mirsayar MM (2011) Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech Res Commun 38:481–485

    Article  MATH  Google Scholar 

  16. Mandal U, Pradhan SC (2014) Transverse vibration analysis of single-layered graphene sheet under magneto-thermal environment based on nonlocal plate theory. J Appl Phys 116:247–278

    Article  Google Scholar 

  17. Shen HS, Zhang CL (2010) Nonlocal shear deformable shell model for post-buckling of axially compressed double-walled carbon nanotubes embedded in an elastic matrix. Phil Mag 90:3189–3214

    Article  Google Scholar 

  18. Shen HS, Zhang CL, Xiang Y (2010) Nonlocal shear deformable shell model for thermal postbuckling of axially compressed double-walled carbon nanotubes. Philos Mag 90:3189–3214

    Article  Google Scholar 

  19. Shen H-S, Zhang C-L (2010) Nonlocal shear deformable shell model for post-buckling of axially compressed double-walled carbon nanotubes embedded in an elastic matrix. J Appl Mech 77:041006

    Article  Google Scholar 

  20. Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    Article  MATH  Google Scholar 

  21. Ansari R, Rouhi H, Sahmani S (2011) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53:786–792

    Article  Google Scholar 

  22. Fang X-Q, Zhu C-S, Liu J-X, Jing Z (2018) Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure. Mater Res Express 5:045017

    Article  Google Scholar 

  23. Shojaeefard MH, Googarchin HS, Mahinzare M, Adibi M (2018) Vibration and buckling analysis of a rotary FG piezomagnetic nanoshell embedded in viscoelastic media. J Intell Mater Syst Struct 29:2344–2361

    Article  Google Scholar 

  24. Sahmani S, Aghdam MM (2017) A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos Struct 178:97–109

    Article  Google Scholar 

  25. Zhu CS, Fang XQ, Liu JX (2017) Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque. Int J Mech Sci 133:662–673

    Article  Google Scholar 

  26. Mohammadi K, Mahinzare M, Ghorbani K, Ghadiri M (2018) Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst Technol 24:1133–1146

    Article  Google Scholar 

  27. Sahmani S, Aghdam MM (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131–132:95–106

    Article  Google Scholar 

  28. Ansari R, Hassanzadeh-Aghdam MK (2017) Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52:1625–1640

    Article  Google Scholar 

  29. Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK (2020) A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells. Thin-Walled Struct 153:106845

    Article  Google Scholar 

  30. Wang YQ, Liang C, Zu JW (2019) Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory. The European Physical Journal Plus 134:233

    Article  Google Scholar 

  31. Dehghan M, Ebrahimi F (2018) On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory. Eur Phys J Plus 133:466

    Article  Google Scholar 

  32. Ma LH, Ke LL, Reddy JN, Yang J, Kitipornchai S, Wang YS (2018) Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos Struct 199:10–23

    Article  Google Scholar 

  33. Zeighampour H, Beni YT, Karimipour I (2017) Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory. Microfluid Nanofluid 21:85

    Article  Google Scholar 

  34. Zeighampour H, Tadi Beni Y, Botshekanan DM (2018) Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct 122:378–386

    Article  Google Scholar 

  35. Xie K, Chen M, Zhang L, Xie D (2017) Free and forced vibration analysis of non-uniformly supported cylindrical shells through wave based method. Int J Mech Sci 128:512–526

    Article  Google Scholar 

  36. Xie K, Chen M, Zhang L, Xie D (2017) Wave based method for vibration analysis of elastically coupled annular plate and cylindrical shell structures. Appl Acoust 123:107–122

    Article  Google Scholar 

  37. Xie K, Chen M, Dong W, Li W (2019) A unified semi-analytical method for vibration analysis of shells of revolution stiffened by rings with T cross-section. Thin-Walled Struct 139:412–431

    Article  Google Scholar 

  38. Xie K, Chen M, Deng N, Xu K (2014) Wave based method for vibration and acoustic characteristics analysis of underwater cylindrical shell with bulkheads. In: INTER-NOISE and NOISE-CON congress and conference proceedings: institute of noise control engineering, pp 572–581

  39. Xie K, Chen M, Deng N, Jia W (2015) Free and forced vibration of submerged ring-stiffened conical shells with arbitrary boundary conditions. Thin-Walled Struct 96:240–255

    Article  Google Scholar 

  40. Xie K, Chen M (2018) Wave based method for vibration analysis of double-walled cylindrical shells. Appl Acoust 139:293–306

    Article  Google Scholar 

  41. Shi D, He D, Wang Q, Ma C, Shu H (2019) Wave based method for free vibration analysis of cross-ply composite laminated shallow shells with general boundary conditions. Materials 12:3808

    Article  Google Scholar 

  42. Pang F, Huo R, Li H, Gao C, Miao X, Ren Y (2019) Wave-based method for free vibration analysis of orthotropic cylindrical shells with arbitrary boundary conditions. Math Probl Eng 2019:4924306

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu T, Wang A, Wang Q, Qin B (2020) Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled Struct 148:106580

    Article  Google Scholar 

  44. He D, Shi D, Wang Q, Shuai C (2019) Wave based method (WBM) for free vibration analysis of cross-ply composite laminated cylindrical shells with arbitrary boundaries. Compos Struct 213:284–298

    Article  Google Scholar 

  45. Shi D, He D, Wang Q, Ma C, Shu H (2020) Free vibration analysis of closed moderately thick cross-ply composite laminated cylindrical shell with arbitrary boundary conditions. Materials 13:884

    Article  Google Scholar 

  46. He D, Shi D, Wang Q, Ma C (2021) A unified power series method for vibration analysis of composite laminate conical, cylindrical shell and annular plate. Structures 29:305–327

    Article  Google Scholar 

  47. Yang FL, Wang YQ (2020) Free and forced vibration of beams reinforced by 3D graphene foam. Int J Appl Mech 12:2050056

    Article  Google Scholar 

  48. Wang YQ, Zhao HL (2019) Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch Appl Mech 89:2335–2349

    Article  Google Scholar 

  49. Wang YQ, Ye C, Zu JW (2019) Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol 85:359–370

    Article  Google Scholar 

  50. Wang YQ, Teng MW (2019) Vibration analysis of circular and annular plates made of 3D graphene foams via Chebyshev-Ritz method. Aerosp Sci Technol 95:105440

    Article  Google Scholar 

  51. Eringen A, Wegner J (2003) Nonlocal continuum field theories. Appl Mech Rev 56:391–398

    Article  Google Scholar 

  52. Eringen CA (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  53. Tornabene F (2009) Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput Methods Appl Mech Eng 198:2911–2935

    Article  MATH  Google Scholar 

  54. Pradhan SC, Loy CT, Lam KY, Reddy JN (2000) Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl Acoust 61:111–129

    Article  Google Scholar 

  55. Qatu MS (2004) Vibration of laminated shells and plates. Elsevier, pp 75–105

    Book  Google Scholar 

  56. Leissa AW, Nordgren RP (1993) Vibration of shells. J Appl Mech 41:544

    Article  Google Scholar 

  57. Qu Y, Long X, Yuan G, Meng G (2013) A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions. Compos B Eng 50:381–402

    Article  Google Scholar 

  58. Jin G, Xiang X, Liu Z (2014) The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory. Compos Struct 108:435–448

    Article  Google Scholar 

  59. He JH (2001) Hamilton principle and generalized variational principles of linear thermopiezoelectricity. J Appl Mech 68:666–667

    Article  MathSciNet  MATH  Google Scholar 

  60. Loy CT, Lam KY, Shu C (1997) Analysis of cylindrical shells using generalized differential quadrature. Shock Vib 4:193–198

    Article  Google Scholar 

  61. Zhang XM, Liu GR, Lam KY (2001) Vibration analysis of thin cylindrical shells using wave propagation approach. J Sound Vib 239:397–403

    Article  Google Scholar 

  62. Lu L, Zhu L, Guo X, Zhao J, Liu G (2019) A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl Math Mech 40:1695–1722

    Article  MATH  Google Scholar 

  63. Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51705537) and the Natural Science Foundation of Hunan Province of China (2018JJ3661). The authors also gratefully acknowledge the supports from State Key Laboratory of High Performance Complex Manufacturing, Central South University, China (Grant No. ZZYJKT2018-11), and the Harbin Vocational & Technical College campus project (Grant No. HZY2020ZY005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Wang.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The detailed expression of the coefficients in Eq. (25) is shown as:

$$ \begin{array}{*{20}l} {L_{11} = A_{11} {\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} + \frac{{A_{66} }}{{R^{2} }}\frac{{\partial^{2} }}{{\partial \theta^{2} }},L_{12} = \frac{{A_{12} }}{R}\frac{{\partial^{2} }}{\partial x\partial \theta } + \frac{{A_{66} }}{R}\frac{{\partial^{2} }}{\partial x\partial \theta },L_{13} = \frac{{A_{12} }}{R}\frac{\partial }{\partial x}} \hfill \\ {L_{14} = B_{11} {\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} + {\kern 1pt} \frac{{B_{66} }}{{R^{2} }}\frac{{\partial^{2} }}{{\partial \theta^{2} }},L_{15} = \frac{{B_{12} {\kern 1pt} }}{R}\frac{{\partial^{2} }}{\partial x\partial \theta } + \frac{{B_{66} }}{R}\frac{{\partial^{2} }}{\partial x\partial \theta },L_{21} = \frac{{\left( {A_{12} + A_{66} } \right)}}{R}\frac{{\partial^{2} }}{\partial x\partial \theta }} \hfill \\ {L_{22} = A_{66} {\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} - \frac{{A_{11} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} - \frac{{K_{c} {\kern 1pt} A_{66} }}{{R^{2} }},L_{23} = \frac{{\left( {K_{{c{\kern 1pt} }} A_{66} + A_{11} } \right)}}{{R^{2} }}\frac{\partial }{\partial \theta }} \hfill \\ {L_{24} = \frac{{\left( {B_{66} + B_{12} } \right)}}{R}\frac{{\partial^{2} }}{\partial x\partial \theta },L_{25} = {\kern 1pt} \frac{{K_{c} {\kern 1pt} A_{66} }}{R} + \frac{{B_{11} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} + B_{{66{\kern 1pt} }} \frac{{\partial^{2} }}{{\partial x^{2} }}} \hfill \\ {L_{31} = - \frac{{A_{12} }}{R}\frac{\partial }{\partial x},L_{32} = \frac{{\left( { - K_{{c{\kern 1pt} }} A_{66} - A_{11} } \right)}}{{R^{2} }}\frac{\partial }{\partial \theta },L_{33} = - \frac{{A_{11} }}{{R^{2} }}{\kern 1pt} + \frac{{A_{66} {\kern 1pt} K_{c} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} + K_{c} {\kern 1pt} A_{66} \frac{{\partial^{2} }}{{\partial x^{2} }}} \hfill \\ {L_{34} = \left( {A_{66} {\kern 1pt} K_{c} {\kern 1pt} - \frac{{B_{12} }}{R}} \right)\frac{\partial }{\partial x},L_{35} = \left( {\frac{{A_{66} {\kern 1pt} K_{c} }}{R} - \frac{{B_{11} }}{{R^{2} }}} \right)\frac{\partial }{\partial \theta },L_{41} = B_{11} {\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} + \frac{{B_{66} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }}} \hfill \\ {L_{42} = \frac{{\left( {B_{12} + B_{66} } \right)}}{R}\frac{{\partial^{2} }}{\partial x\partial \theta },L_{43} = \left( { - A_{66} {\kern 1pt} K_{c} {\kern 1pt} + \frac{{B_{12} }}{R}} \right)\frac{\partial }{\partial x},L_{44} = \frac{{D_{66} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} + D_{11} {\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} - K_{c} {\kern 1pt} A_{66} {\kern 1pt} } \hfill \\ {L_{45} = \frac{{\left( {D_{12} + D_{66} } \right)}}{R}\frac{{\partial^{2} }}{\partial x\partial \theta },L_{51} = \frac{{\left( {B_{66} + B_{12} } \right)}}{R},L_{52} = \frac{{B_{22} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} + B{}_{66}{\kern 1pt} \frac{{\partial^{2} }}{{\partial x^{2} }} + \frac{{K_{c} {\kern 1pt} A_{66} }}{R}} \hfill \\ {L_{53} = \left( {\frac{{ - A_{66} {\kern 1pt} K_{c} }}{R} + \frac{{B_{11} }}{{R^{2} }}} \right)\frac{\partial }{\partial \theta },L_{54} = \left( {\frac{{D_{12} + D_{66} }}{R}} \right)\frac{{\partial^{2} }}{\partial x\partial \theta },L_{55} = \frac{{D_{22} }}{{R^{2} }}{\kern 1pt} \frac{{\partial^{2} }}{{\partial \theta^{2} }} + D_{66} \frac{{\partial^{2} }}{{\partial x^{2} }} - {\kern 1pt} K_{c} {\kern 1pt} A_{66} } \hfill \\ \end{array} $$

The detailed expression of the coefficients in Eq. (27) is shown as:

$$ \begin{array}{*{20}l} {T_{11} = - k^{2} A_{11} - \frac{{n^{2} A_{66} }}{{R^{2} }}{\kern 1pt} + \omega^{2} I_{0} - \frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }},T_{12} = \frac{{ink\left( {A_{12} {\kern 1pt} + A_{66} {\kern 1pt} } \right)}}{R},T_{13} = \frac{{ikA_{12} {\kern 1pt} }}{R}} \hfill \\ {T_{14} = - k^{2} B_{11} {\kern 1pt} - \frac{{n^{2} B_{66} }}{{R^{2} }}{\kern 1pt} + \omega^{2} I_{1} - \frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }},T_{15} = \frac{{ink\left( {B_{12} + B_{66} } \right)}}{R}} \hfill \\ {T_{21} = \frac{{ink\left( {A_{12} + A_{66} } \right)}}{R},T_{22} = A_{66} k^{2} + {\kern 1pt} \frac{{n^{2} A_{11} }}{{R^{2} }} + \frac{{A_{66} {\kern 1pt} K_{c} }}{{R^{2} }}{\kern 1pt} - \omega^{2} I_{{0{\kern 1pt} }} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{23} = \frac{{nK_{{c{\kern 1pt} }} A_{66} + nA_{11} }}{{R^{2} }},T_{24} = \frac{{ink\left( {B_{12} {\kern 1pt} + B_{66} } \right)}}{R},T_{25} = B_{66} {\kern 1pt} k^{2} - \frac{{K_{c} {\kern 1pt} A_{66} }}{R}{\kern 1pt} + \frac{{n^{2} B_{11} }}{{R^{2} }} - \omega^{2} I_{1} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{31} = - \frac{{ikA_{12} }}{R},T_{32} = - {\kern 1pt} \frac{{nA_{11} }}{{R^{2} }} - \frac{{nA_{66} K_{{c{\kern 1pt} }} }}{{R^{2} }},T_{33} = - A_{{66{\kern 1pt} }} k^{2} K_{c} - \frac{{n^{2} A_{66} K_{{c{\kern 1pt} }} }}{{R^{2} }} - \frac{{A_{11} }}{{R^{2} }}{\kern 1pt} + I_{{0{\kern 1pt} }} \omega^{2} - \frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{34} = ikA_{{66{\kern 1pt} }} K_{c} {\kern 1pt} - \frac{{ikB_{12} {\kern 1pt} }}{R},T_{35} = \frac{{nK_{c} {\kern 1pt} A_{66} }}{R} - \frac{{nB_{11} }}{{R^{2} }},T_{41} = k^{2} B_{11} + \frac{{n^{2} B_{66} }}{{R^{2} }} - I_{1} \omega^{2} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{42} = - \frac{{ink\left( {B_{{12{\kern 1pt} }} + B_{66} {\kern 1pt} } \right)}}{R},T_{43} = ikA_{66} {\kern 1pt} K_{c} {\kern 1pt} - \frac{{ikB_{12} }}{R},T_{44} = D_{11} k^{2} + A_{66} {\kern 1pt} K_{c} {\kern 1pt} + \frac{{n^{2} D_{66} }}{{R^{2} }}{\kern 1pt} - I_{2} \omega^{2} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{45} = - \frac{{ink{\kern 1pt} \left( {D_{12} + D_{66} } \right)}}{R},T_{51} = \frac{{ink\left( {B_{12} {\kern 1pt} + B_{66} {\kern 1pt} } \right)}}{R},T_{52} = k^{2} B_{{66{\kern 1pt} }} - {\kern 1pt} \frac{{A_{66} {\kern 1pt} K_{c} }}{R}{\kern 1pt} + \frac{{n^{2} B_{11} }}{{R^{2} }} - I_{1} \omega^{2} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ {T_{53} = \frac{{nB_{11} }}{{R^{2} }} - \frac{{nA_{{66{\kern 1pt} }} K_{c} }}{R},T_{54} = \frac{{ink\left( {D_{12} {\kern 1pt} + D_{66} } \right)}}{R},T_{55} = k^{2} {\kern 1pt} D_{66} + K_{c} {\kern 1pt} A_{66} + \frac{{n^{2} D_{11} }}{{R^{2} }}{\kern 1pt} - I_{2} w^{2} { + }\frac{{I_{0} {\kern 1pt} \omega^{2} \left( {R^{2} k^{2} + n^{2} } \right)}}{{R^{2} }}} \hfill \\ \end{array} $$

Appendix B

The detailed representation of the coefficients matrix in Eq. (29) is listed as:

$$ \begin{aligned} & \Delta_{\alpha } = \left| {\begin{array}{*{20}l} { - T_{13} } \hfill & {T_{12} } \hfill & {T_{14} } \hfill & {T_{15} } \hfill \\ { - T_{23} } \hfill & {T_{22} } \hfill & {T_{24} } \hfill & {T_{25} } \hfill \\ { - T_{43} } \hfill & {T_{42} } \hfill & {T_{44} } \hfill & {T_{45} } \hfill \\ { - T_{53} } \hfill & {T_{52} } \hfill & {T_{54} } \hfill & {T_{55} } \hfill \\ \end{array} } \right|_{{k_{n} = k_{n,ns} }} \quad \Delta_{\beta } = \left| {\begin{array}{*{20}l} {T_{11} } \hfill & { - T_{13} } \hfill & {T_{14} } \hfill & {T_{15} } \hfill \\ {T_{21} } \hfill & { - T_{23} } \hfill & {T_{24} } \hfill & {T_{25} } \hfill \\ {T_{41} } \hfill & { - T_{43} } \hfill & {T_{44} } \hfill & {T_{45} } \hfill \\ {T_{51} } \hfill & { - T_{53} } \hfill & {T_{54} } \hfill & {T_{55} } \hfill \\ \end{array} } \right|_{{k_{n} = k_{n,ns} }} \\ & \Delta_{\chi } = \left| {\begin{array}{*{20}l} {T_{11} } \hfill & {T_{12} } \hfill & { - T_{13} } \hfill & {T_{15} } \hfill \\ {T_{21} } \hfill & {T_{22} } \hfill & { - T_{23} } \hfill & {T_{25} } \hfill \\ {T_{41} } \hfill & {T_{42} } \hfill & { - T_{43} } \hfill & {T_{45} } \hfill \\ {T_{51} } \hfill & {T_{52} } \hfill & { - T_{53} } \hfill & {T_{55} } \hfill \\ \end{array} } \right|_{{k_{n} = k_{n,ns} }} \quad \Delta_{\delta } = \left| {\begin{array}{*{20}l} {T_{11} } \hfill & {T_{12} } \hfill & {T_{14} } \hfill & { - T_{13} } \hfill \\ {T_{21} } \hfill & {T_{22} } \hfill & {T_{24} } \hfill & { - T_{23} } \hfill \\ {T_{41} } \hfill & {T_{42} } \hfill & {T_{44} } \hfill & { - T_{43} } \hfill \\ {T_{51} } \hfill & {T_{52} } \hfill & {T_{54} } \hfill & { - T_{53} } \hfill \\ \end{array} } \right|_{{k_{n} = k_{n,ns} }} \\ \end{aligned} $$
$$ \Delta = \left| {\begin{array}{*{20}l} {T_{11} } \hfill & {T_{12} } \hfill & {T_{14} } \hfill & {T_{15} } \hfill \\ {T_{21} } \hfill & {T_{22} } \hfill & {T_{24} } \hfill & {T_{25} } \hfill \\ {T_{41} } \hfill & {T_{42} } \hfill & {T_{44} } \hfill & {T_{45} } \hfill \\ {T_{51} } \hfill & {T_{52} } \hfill & {T_{54} } \hfill & {T_{55} } \hfill \\ \end{array} } \right|_{{k_{n} = k_{n,ns} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Shi, D., Wang, Q. et al. Free vibration characteristics and wave propagation analysis in nonlocal functionally graded cylindrical nanoshell using wave-based method. J Braz. Soc. Mech. Sci. Eng. 43, 292 (2021). https://doi.org/10.1007/s40430-021-03008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03008-2

Keywords

Navigation