Skip to main content

Advertisement

Log in

An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The current study aimed to examine an experimental investigation on the energy absorption capability of glass/carbon intraply hybrid filament wound composite pipes subjected to quasi-static lateral compression loading. The composite pipes with different fiber orientation angles were fabricated for both hybrid and non-hybrid to systematically analyze the performance of intraply hybridization process. At least 5 samples of each composite pipe configuration were tested to obtain the load–displacement curves and fracture patterns. The failure modes and fracture mechanisms of crushed samples were discussed to establish the influence of hybridization on crashworthiness parameters through load–displacement response. Separation between the layers (delamination) was occurred as the main damage mechanism in all samples. Hybridization with glass fiber significantly increased the energy absorption capability and load carrying capacity of carbon fiber-reinforced composite pipes. Their crushing values were found as between the values of pipes made of glass fiber and carbon fiber as expected. Furthermore, hybridization provided to opportunity of more stable load–displacement response for crushing process. An increment in fiber orientation angle was also led to increase in energy absorption capability and load carrying capacity. The pipe made of glass with higher fiber orientation had the best specific energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gemi L, Köklü U, Yazman Ş, Morkavuk S (2020) The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: part-1 mechanical characterization and drilling tests. Compos B Eng 186:107787. https://doi.org/10.1016/j.compositesb.2020.107787

    Article  Google Scholar 

  2. Prabhakar MM, Rajini N, Ayrilmis N, Mayandi K, Siengchin S, Senthilkumar K, Ismail SO (2019) An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111419

    Article  Google Scholar 

  3. Gemi L, Morkavuk S, Köklü U, Yazman Ş (2020) The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: part-2 damage analysis and surface quality. Compos Struct 235:111737. https://doi.org/10.1016/j.compstruct.2019.111737

    Article  Google Scholar 

  4. Yan L, Chouw N, Jayaraman K (2014) Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Compos B Eng 63:15–26. https://doi.org/10.1016/j.compositesb.2014.03.013

    Article  Google Scholar 

  5. Bambach MR (2010) Axial capacity and crushing behavior of metal–fiber square tubes–steel, stainless steel and aluminum with CFRP. Compos B Eng 41(7):550–559. https://doi.org/10.1016/j.compositesb.2010.06.002

    Article  Google Scholar 

  6. Mahdi E, Sebaey TA (2014) Crushing behavior of hybrid hexagonal/octagonal cellular composite system: aramid/carbon hybrid composite. Mater Des 63:6–13. https://doi.org/10.1016/j.matdes.2014.06.001

    Article  Google Scholar 

  7. Gemi L (2018) Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Compos B Eng 153:217–232. https://doi.org/10.1016/j.compositesb.2018.07.056

    Article  Google Scholar 

  8. Rafiee R, Ghorbanhosseini A (2020) Developing a micro-macromechanical approach for evaluating long-term creep in composite cylinders. Thin-Walled Struct 151:106714. https://doi.org/10.1016/j.tws.2020.106714

    Article  Google Scholar 

  9. Rafiee R, Habibagahi MR (2018) On the stiffness prediction of GFRP pipes subjected to transverse loading. KSCE J Civ Eng 22(11):4564–4572. https://doi.org/10.1007/s12205-018-2003-5

    Article  Google Scholar 

  10. Rafiee R, Ghorbanhosseini A, Rezaee S (2019) Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact. Compos Struct 226:111230. https://doi.org/10.1016/j.compstruct.2019.111.230

    Article  Google Scholar 

  11. Gemi L, Aksoylu C, Yazman Ş, Özkılıç YO, Arslan MH (2019) Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite. Compos Struct 229:111399. https://doi.org/10.1016/j.compstruct.2019.111399

    Article  Google Scholar 

  12. Madenci E, Özkılıç YO, Gemi L (2020) Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112162

    Article  Google Scholar 

  13. Özbek Ö, Bozkurt ÖY, Erkliğ A (2020) Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turk J Eng 4(4):197–202. https://doi.org/10.31127/tuje.644025

    Article  Google Scholar 

  14. Hawa A, Majid MA, Afendi M, Marzuki HFA, Amin NAM, Mat F, Gibson AG (2016) Burst strength and impact behaviour of hydrothermally aged glass fibre/epoxy composite pipes. Mater Des 89:455–464. https://doi.org/10.1016/j.matdes.2015.09.082

    Article  Google Scholar 

  15. Onder A, Sayman O, Dogan T, Tarakcioglu N (2009) Burst failure load of composite pressure vessels. Compos Struct 89(1):159–166. https://doi.org/10.1016/j.compstruct.2008.06.021

    Article  Google Scholar 

  16. Rafiee R, Habibagahi MR (2018) Evaluating mechanical performance of GFRP pipes subjected to transverse loading. Thin-Walled Struct 131:347–359. https://doi.org/10.1016/j.tws.2018.06.037

    Article  Google Scholar 

  17. Özbek Ö, Bozkurt ÖY (2019) Hoop tensile and compression behavior of glass-carbon intraply hybrid fiber reinforced filament wound composite pipes. Mater Test 61(8):763–769. https://doi.org/10.3139/120.111395

    Article  Google Scholar 

  18. Demirci MT, Tarakçıoğlu N, Avcı A, Erkendirci ÖF (2014) Fracture toughness of filament wound BFR and GFR arc shaped specimens with Charpy impact test method. Compos B Eng 66:7–14. https://doi.org/10.1016/j.compositesb.2014.04.015

    Article  Google Scholar 

  19. McGregor CJ, Vaziri R, Poursartip A, Xiao X (2007) Simulation of progressive damage development in braided composite tubes under axial compression. Compos A Appl Sci Manuf 38(11):2247–2259. https://doi.org/10.1016/j.compositesa.2006.10.007

    Article  Google Scholar 

  20. Gemi L, Tarakçioğlu N, Akdemir A, Şahin ÖS (2009) Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure. Mater Des 30(10):4293–4298. https://doi.org/10.1016/j.matdes.2009.04.025

    Article  Google Scholar 

  21. Kara M, Kırıcı M (2017) Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Compos B Eng 123:55–63. https://doi.org/10.1016/j.compositesb.2017.04.021

    Article  Google Scholar 

  22. Huang Z, Zhang W, Qian X, Su Z, Pham DC, Sridhar N (2020) Fatigue behaviour and life prediction of filament wound CFRP pipes based on coupon tests. Mar Struct 72:102756. https://doi.org/10.1016/j.marstruc.2020.102756

    Article  Google Scholar 

  23. Demirci MT (2020) Low velocity impact and fracture characterization of SiO2 nanoparticles filled basalt fiber reinforced composite tubes. J Compos Mater. https://doi.org/10.1177/0021998320915952

    Article  Google Scholar 

  24. Uyaner M, Kara M, Şahin A (2014) Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact. Compos B Eng 61:358–364. https://doi.org/10.1016/j.compositesb.2013.06.039

    Article  Google Scholar 

  25. Gemi L, Kayrıcı M, Uludağ M, Gemi DS, Şahin ÖS (2018) Experimental and statistical analysis of low velocity impact response of filament wound composite pipes. Compos B Eng 149:38–48. https://doi.org/10.1016/j.compositesb.2018.05.006

    Article  Google Scholar 

  26. Gemi L, Morkavuk S, Köklü U, Gemi DS (2019) An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Compos B Eng 172:186–194. https://doi.org/10.1016/j.compositesb.2019.05.023

    Article  Google Scholar 

  27. Maleki S, Rafiee R, Hasannia A, Habibagahi MR (2019) Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse loading using cohesive zone method. Front Struct Civ Eng 13(6):1316–1323. https://doi.org/10.1007/s11709-019-0555-1

    Article  Google Scholar 

  28. Özbek Ö, Bozkurt ÖY, Erkliğ A (2019) An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading. Polym Test 79:106082. https://doi.org/10.1016/j.polymertesting.2019.106082

    Article  Google Scholar 

  29. Pol MH, Golshan NR (2019) Experimental investigation of parameters affected on behavior of composite tubes under quasi static and dynamic axial loading. Compos B Eng 163:471–486. https://doi.org/10.1016/j.compositesb.2019.01.011

    Article  Google Scholar 

  30. Quanjin M, Rejab MRM, Idris MS, Hassan SA, Kumar NM (2019) Effect of winding angle on the quasi-static crushing behaviour of thin-walled carbon fibre-reinforced polymer tubes. Polym Polym Compos. https://doi.org/10.1177/0967391119887571

    Article  Google Scholar 

  31. Elahi SA, Rouzegar J, Niknejad A, Assaee H (2017) Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Struct 114:1–10. https://doi.org/10.1016/j.tws.2017.01.029

    Article  Google Scholar 

  32. Elgalai AM, Mahdi E, Hamouda AMS, Sahari BS (2004) Crushing response of composite corrugated tubes to quasi-static axial loading. Compos Struct 66(1–4):665–671. https://doi.org/10.1016/j.compstruct.2004.06.002

    Article  Google Scholar 

  33. Liu Q, Xing H, Ju Y, Ou Z, Li Q (2014) Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes. Compos Struct 117:1–11. https://doi.org/10.1016/j.compstruct.2014.06.024

    Article  Google Scholar 

  34. Kalhor R, Case SW (2015) The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading. Compos Struct 130:44–50. https://doi.org/10.1016/j.compstruct.2015.04.009

    Article  Google Scholar 

  35. Hu D, Zhang C, Ma X, Song B (2016) Effect of fiber orientation on energy absorption characteristics of glass cloth/epoxy composite tubes under axial quasi-static and impact crushing condition. Compos A Appl Sci Manuf 90:489–501. https://doi.org/10.1016/j.compositesa.2016.08.017

    Article  Google Scholar 

  36. Sebaey TA, Mahdi E, Shamseldin A, Eltai EO (2014) Crushing behavior of hybrid hexagonal/octagonal cellular composite system: all made of carbon fiber reinforced epoxy. Mater Des 60:556–562. https://doi.org/10.1016/j.matdes.2014.04.044

    Article  Google Scholar 

  37. Abdewi EF, Sulaiman S, Hamouda AMS, Mahdi E (2008) Quasi-static axial and lateral crushing of radial corrugated composite tubes. Thin-Walled Struct 46(3):320–332. https://doi.org/10.1016/j.tws.2007.07.018

    Article  Google Scholar 

  38. Ismail AE, Sahrom MF (2015) Lateral crushing energy absorption of cylindrical kenaf fiber reinforced composites. Int J Appl Eng Res 10(8):19277–19288

    Google Scholar 

  39. Ramakrishna S (1997) Microstructural design of composite materials for crashworthy structural applications. Mater Des 18(3):167–173. https://doi.org/10.1016/S0261-3069(97)00098-8

    Article  Google Scholar 

  40. Liu Q, Xu X, Ma J, Wang J, Shi Y, Hui D (2017) Lateral crushing and bending responses of CFRP square tube filled with aluminum honeycomb. Compos B Eng 118:104–115. https://doi.org/10.1016/j.compositesb.2017.03.021

    Article  Google Scholar 

  41. Niknejad A, Elahi SA, Liaghat GH (2012) Experimental investigation on the lateral compression in the foam-filled circular tubes. Mater Des 1980–2015(36):24–34. https://doi.org/10.1016/j.matdes.2011.10.047

    Article  Google Scholar 

  42. Abosbaia AS, Mahdi E, Hamouda AMS, Sahari BB, Mokhtar AS (2005) Energy absorption capability of laterally loaded segmented composite tubes. Compos Struct 70(3):356–373. https://doi.org/10.1016/j.compstruct.2004.08.039

    Article  Google Scholar 

  43. Sari M, Karakuzu R, Deniz ME, Icten BM (2012) Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact. J Compos Mater 46(15):1787–1794. https://doi.org/10.1177/0021998311425717

    Article  Google Scholar 

  44. Hafeez F, Almaskari F (2015) Experimental investigation of the scaling laws in laterally indented filament wound tubes supported with V shaped cradles. Compos Struct 126:265–284. https://doi.org/10.1016/j.compstruct.2015.02.073

    Article  Google Scholar 

  45. Li S, Guo X, Li Q, Ruan D, Sun G (2020) On lateral compression of circular aluminum, CFRP and GFRP tubes. Compos Struct 232:111534. https://doi.org/10.1016/j.compstruct.2019.111534

    Article  Google Scholar 

  46. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: a review. Compos A Appl Sci Manuf 67:181–200. https://doi.org/10.1016/j.compositesa.2014.08.027

    Article  Google Scholar 

  47. Ha SK, Kim SJ, Nasir SU, Han SC (2012) Design optimization and fabrication of a hybrid composite flywheel rotor. Compos Struct 94(11):3290–3299. https://doi.org/10.1016/j.compstruct.2012.04.015

    Article  Google Scholar 

  48. Standard ASTM (1994) D2584-94. Test method for ignition loss of cured reinforced resins. West Conshohocken, PA

  49. Standard ASTM (2011) D2412. Standard test method for determination of external loading characteristics of plastic pipe by parallel-plate loading. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  50. Wang Y, Feng J, Wu J, Hu D (2016) Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions. Compos Struct 153:356–368. https://doi.org/10.1016/j.compstruct.2016.06.033

    Article  Google Scholar 

  51. Quaresimin M, Ricotta M, Martello L, Mian S (2013) Energy absorption in composite laminates under impact loading. Compos B Eng 44(1):133–140. https://doi.org/10.1016/j.compositesb.2012.06.020

    Article  Google Scholar 

  52. Schoeppner GA, Abrate S (2000) Delamination threshold loads for low velocity impact on composite laminates. Compos A Appl Sci Manuf 31(9):903–915. https://doi.org/10.1016/S1359-835X(00)00061-0

    Article  Google Scholar 

  53. Almeida JHS Jr, Ribeiro ML, Tita V, Amico SC (2016) Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: experimental and numerical approaches. Mater Des 96:431–438. https://doi.org/10.1016/j.matdes.2016.02.054

    Article  Google Scholar 

  54. Othman A, Abdullah S, Ariffin AK, Mohamed NAN (2016) Investigating the crushing behavior of quasi-static oblique loading on polymeric foam filled pultruded composite square tubes. Compos B Eng 95:493–514. https://doi.org/10.1016/j.compositesb.2016.04.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özkan Özbek.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, Ö., Doğan, N.F. & Bozkurt, Ö.Y. An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes. J Braz. Soc. Mech. Sci. Eng. 42, 389 (2020). https://doi.org/10.1007/s40430-020-02475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02475-3

Keywords

Navigation