Skip to main content
Log in

Traub-type high order iterative procedures on Riemannian manifolds

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We present semilocal convergence results for Traub-type high convergence order iterative procedures for approximating zeros of a vector field on Riemannian manifolds. A characterization of the convergence under Kantorovich-type conditions and error estimates are also given in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8, 197–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amat, S., Argyros, I.K., Busquier, S., Hilout, S.: Expanding the applicability of high order Traub-type iterative procedures. J. Optim. Theory Appl. (accepted)

  4. Amat, S., Bermúdez, C., Busquier, S., Legaz, M.J., Plaza, S.: On a family of high-order iterative methods under Kantorovich conditions and some applications. Abst. Appl. Anal. 2012, 14 (2012) (Article ID 782170)

  5. Amat, S., Bermúdez, C., Busquier, S., Plaza, S.: On a third-order Newton-type method free of bilinear operators. Numer. Linear Algebr. Appl. 17, 639–653 (2010)

    MATH  Google Scholar 

  6. Amat, S., Busquier, S.: A two-step Steffensen’s method under modified convergence conditions. J. Math. Anal. Appl. 324, 1084–1092 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Amat, S., Busquier, S.: Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336, 243–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Amat, S., Busquier, S., Gutiérrez, J.M.: Third-order iterative methods with applications to Hammerstein equations: a unified approach. J. Comput. Appl. Math. 235, 2936–2943 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Argyros, I.K.: Chebyshev-Halley like methods in Banach spaces. Korean J. Comput. Appl. Math. 4, 83–107 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Argyros, I.K.: An improved unifying convergence analysis of Newton’s method in Riemannian manifolds. J. Appl. Math. Comput. 25, 345–351 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Argyros, I.K.: Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point. Rev. Anal. Numér. Théor. Approx. 36, 123–138 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2008)

    MATH  Google Scholar 

  14. Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Methods for Equations and Variational Inclusions. CRC Press/Taylor and Francis Group, New York (2012)

    Google Scholar 

  15. Argyros, I.K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev-secant-type methods. J. Comput. Appl. Math. 235, 3195–3206 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Argyros, I.K., Hilout, S.: Newton’s method for approximating zeros of vector fields on Riemannian manifolds. J. Appl. Math. Comput. 29, 417–427 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Argyros, I.K., Hilout, S.: On the convergence of two-step Newton-type methods of high efficiency index. Appl. Math. 36, 465–499 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complex. 28, 364–387 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Argyros, I.K., Hilout, S.: Extending the applicability of Newton’s method on Lie groups, submitted

  20. Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York (2011)

    Google Scholar 

  21. Averbuh, V.I., Smoljanov, O.G.: Differentiation theory in linear topological spaces. Russian Math. Surv. 6, 201–258 (1967) (Uspehi Mat. Nauk. 6, 201–260)

    Google Scholar 

  22. Dedieu, J.P., Nowicki, D.: Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds. J. Complex. 21, 487–501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

  24. Eby, W.M.: Pompeiu problem for the Heisenberg ball. Taiwan. J. Math. 15, 2503–2531 (2011)

    MATH  MathSciNet  Google Scholar 

  25. Ezquerro, J.A.: A modification of the Chebyshev method. IMA J. Numer. Anal. 17, 511–525 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Chebyshev-like methods and quadratic equations. Rev. Anal. Numér. Théor. Approx. 28, 23–35 (2000)

    Google Scholar 

  27. Ezquerro, J.A., Hernández, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer. Anal. Comput. Math. 2, 70–77 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ferreira, O., Svaiter, B.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hernández, M.A.: Second-derivative-free variant of the Chebyshev method for nonlinear equations. J. Optim. Theory Appl. 104, 501–515 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon, Oxford (1964)

    MATH  Google Scholar 

  31. Kelley, C.T.: A Shamanskii-like acceleration scheme for nonlinear equations at singular roots. Math. Comput. 47, 609–623 (1986)

    MATH  MathSciNet  Google Scholar 

  32. Khattri, S.K.: Optimal eighth order iterative methods. Math. Comput. Sci. 5, 237–243 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Khattri, S.K.: Two optimal families of iterative methods for solving nonlinear equations. Analysis (Munich) 31, 305–312 (2011)

    MATH  MathSciNet  Google Scholar 

  34. Kou, J., Li, Y., Wang, X.: A modification of Newton method with third-order convergence. Appl. Math. Comput. 181, 1106–1111 (2007)

    Article  MathSciNet  Google Scholar 

  35. Kress, R.: Numerical Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  36. Lang, S.: Introduction to differentiable manifolds. Springer (2002)

  37. Lang, S.: Differential and Riemannian manifolds, vol. 160, 3rd edn. Springer, Berlin (1995)

  38. Li, C., Wang, J.: Newton’s method for sections on Riemannian manifolds: generalized covariant \(\alpha \)-theory. J. Complex. 25, 128–151 (2009)

    Article  MATH  Google Scholar 

  39. Li, W., Szidarovszky, F., Kuang, Y.: Notes on the stability of dynamic economic systems. Appl. Math. Comput. 108, 85–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Romero, N.: Familias paramétricas de procesos iterativos de alto orden de convergencia. Ph.D. Dissertation, Logroño, Spain (2006)

  41. Shamanskii, V.E.: A modification of Newton’s method. Ukrain. Mat. Zh. 19, 133–138 (1967)

    Google Scholar 

  42. Spivak, M.: A comprehensive introduction to differential geometry, vol. I, 3rd ed., Publish or Perish Inc., Houston, Texas (2005)

  43. Spivak, M.: A comprehensive introduction to differential geometry, vol. II, 3rd ed. Publish or Perish Inc., Houston, Texas (2005)

  44. Szidarovszky, F., Yakowitz, S.: Principles and procedures of numerical analysis. Mathematical Concepts and Methods in Science and Engineering, 14. Plenum Press, New York (1978)

  45. Tabatabai, M.A., Eby, W.M., Singh, K.P.: Hyperbolastic modeling of wound healing. Math. Comput. Modell. 53, 755–768 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Traub, J.F.: Iterative methods for the solution of equations. Prentice Hall, Englewood Cliffs, N.J. (1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amat.

Additional information

This paper is dedicated to the memory of Sergio Plaza.

Research of R. Castro and S. Plaza was supported by Fondecyt 10950252 (Chile).

Research of S. Amat and S. Busquier was supported by MICINN-FEDER MTM2010-17508 (Spain) and by 08662/PI/08 (Murcia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Argyros, I.K., Busquier, S. et al. Traub-type high order iterative procedures on Riemannian manifolds. SeMA 63, 27–52 (2014). https://doi.org/10.1007/s40324-014-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-014-0010-0

Keywords

Mathematics Subject Classification (2000)

Navigation