Skip to main content
Log in

A special generalized HSS method for discrete ill-posed problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use a new special generalized Hermitian and skew-Hermitian splitting (SGHSS) method for solving ill-posed inverse problems. Based on an augmented system formulation, we apply a new splitting for the Hermitian part of the coefficient matrix and discuss on the convergence of this iterative method. Moreover, the optimal parameter minimizing the spectral radius of iteration matrix is derived. Finally, we present some numerical examples to demonstrate the performance of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghazadeh N, Bastani M, Khojasteh Salkuyeh D (2015) The generalized Hermitian and skew-Hermitian splitting iterative method for image restoration. Appl Math Model 39:6126–6138

    Article  MathSciNet  Google Scholar 

  • Bai ZZ, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24(3):603–626

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZZ, Golub GH, Pan J (2004) Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer Math 98:1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZZ, Golub GH, Li C (2007) Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math Comput 76(257):287–298

    Article  MathSciNet  MATH  Google Scholar 

  • Bai ZZ, Golub GH, Ng MK (2007) On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer Linear Algebra Appl 14:319–335

    Article  MathSciNet  MATH  Google Scholar 

  • Benzi M (2009) A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J Matrix Anal Appl 31(2):360–374

    Article  MathSciNet  MATH  Google Scholar 

  • Benzi M, Ng MK (2006) Preconditioned iterative methods for weighted Toeplitz least squares problems. SIAM J Matrix Anal Appl 27(4):1106–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223

    Article  MathSciNet  MATH  Google Scholar 

  • Groetsch CW (1984) The theory of Tikhonov regularization for Fredholm equations of the first kind. Pitman, Boston

    MATH  Google Scholar 

  • Guo XX, Wang S (2012) Modied HSS iteration methods for a class of non-Hermitian positive-definite linear systems. Appl Math Comput 218:10122–10128

    MathSciNet  MATH  Google Scholar 

  • Hansen PC (1994) Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6:135. http://www.netlib.org

  • Hansen PC (1997) Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion. SIAM, Philadelphia

    MATH  Google Scholar 

  • Hansen PC (2010) Discrete inverse problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Hansen PC, Nagy JG, O’Leary DP (2006) Deblurring images: matrices spectra and filtering. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Hariharan G, Kannan K, Sharma KR (2009) Haar wavelet method for solving Fisher’s equation. Appl Math Comput 211:284–292

    MathSciNet  MATH  Google Scholar 

  • Khojasteh Salkuyeh D, Behnejad S (2007) Letter to the Editor regarding “Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems” [Numer Linear Algebra Appl 14:217–235 (2007)]. Numer Linear Algebra Appl 19:885–890

  • Li L, Huang TZ, Liu XP (2007) Modied Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numer Linear Algebra Appl 14:217–235

    Article  MathSciNet  MATH  Google Scholar 

  • Lv XG, Huang TZ, Xu ZB, Zhao XL (2013) A special Hermitian and skew-Hermitian splitting method for image restoration. Appl Math Model 37(3):1069–1082

    Article  MathSciNet  MATH  Google Scholar 

  • Nagy JG, Palmer K, Perrone L (2004) Iterative methods for image deblurring: a Matlab object-oriented approach. Numer Algorithms 36:73–93

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    Article  MathSciNet  MATH  Google Scholar 

  • Pourgholi R, Esfahani A, Foadian S, Parehkar S (2013) Resolution of an inverse Problem by Haar basis and Legendre wavelet methods. Int J Wavelets Multiresolut Inf Process 11(5):1–21

  • RestoreTools (2002) RestoreTools: an object oriented Matlab package for image restoration. http://www.mathcs.emory.edu/~nagy/RestoreTools

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 4:1035–1038

    MATH  Google Scholar 

  • Tikhonov AN (1963) English translation of Dokl Akad Nauk. SSSR 151:501–504

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston, Washington, DC

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and anonymous referees for their carefully reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aminikhah.

Additional information

Communicated by Andres Barrea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminikhah, H., Yousefi, M. A special generalized HSS method for discrete ill-posed problems. Comp. Appl. Math. 37, 1507–1523 (2018). https://doi.org/10.1007/s40314-016-0408-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0408-7

Keywords

Mathematics Subject Classification

Navigation