Skip to main content
Log in

Pharmacotherapy for Neuropsychiatric Symptoms in Frontotemporal Dementia

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Despite significant progress in the understanding of the frontotemporal dementias (FTDs), there remains no disease-modifying treatment for these conditions, and limited effective symptomatic treatment. Behavioural variant frontotemporal dementia (bvFTD) is the most common FTD syndrome, and is characterized by severe impairments in behaviour, personality and cognition. Neuropsychiatric symptoms are common features of bvFTD but are present in the other FTD syndromes. Current treatment strategies therefore focus on ameliorating the neuropsychiatric features. Here we review the rationale for current treatments related to each of the main neuropsychiatric symptoms forming the diagnostic criteria for bvFTD relevant to all FTD subtypes, and two additional symptoms not currently part of the diagnostic criteria: lack of insight and psychosis. Given the paucity of effective treatments for these symptoms, we highlight how contributing mechanisms delineated in cognitive neuroscience may inform future approaches to clinical trials and more precise symptomatic treatments for FTDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet Lond Engl. 2015;386:1672–82.

    Article  Google Scholar 

  2. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–54.

    Article  CAS  PubMed  Google Scholar 

  4. Rosen HJ, Boeve BF, Boxer AL. Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: recent findings from ARTFL and LEFFTDS. Alzheimers Dement. 2020;16:71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Snowden JS, Bathgate D, Varma A, Blackshaw A, Gibbons ZC, Neary D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry. 2001;70:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8:33–48.

    Article  PubMed  Google Scholar 

  7. Panza F, Lozupone M, Seripa D, Daniele A, Watling M, Giannelli G, et al. Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol. 2020;16:213–28.

    Article  CAS  PubMed  Google Scholar 

  8. Benussi A, Premi E, Gazzina S, Brattini C, Bonomi E, Alberici A, et al. Progression of behavioral disturbances and neuropsychiatric symptoms in patients with genetic frontotemporal dementia. JAMA Netw Open. 2021;4: e2030194.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seeley WW, Allman JM, Carlin DA, Crawford RK, Macedo MN, Greicius MD, et al. Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal networks and neuronal evolution. Alzheimer Dis Assoc Disord. 2007;21:S50-57.

    Article  PubMed  Google Scholar 

  10. Ranasinghe KG, Rankin KP, Pressman PS, Perry DC, Lobach IV, Seeley WW, et al. Distinct subtypes of behavioral variant frontotemporal dementia based on patterns of network degeneration. JAMA Neurol. 2016;73:1078–88.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hodges JR. Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology. 2001;56:S6-10.

    Article  CAS  PubMed  Google Scholar 

  12. Borroni B, Grassi M, Premi E, Gazzina S, Alberici A, Cosseddu M, et al. Neuroanatomical correlates of behavioural phenotypes in behavioural variant of frontotemporal dementia. Behav Brain Res. 2012;235:124–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lansdall CJ, Coyle-Gilchrist ITS, Jones PS, Vázquez Rodríguez P, Wilcox A, Wehmann E, et al. Apathy and impulsivity in frontotemporal lobar degeneration syndromes. Brain. 2017;140:1792–807.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc B Biol Sci. 2007;362:917–32.

    Article  CAS  Google Scholar 

  15. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain J Neurol. 1995;118(Pt 1):279–306.

    Article  Google Scholar 

  16. Brewer JA, Potenza MN. The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol. 2008;75:63–75.

    Article  CAS  PubMed  Google Scholar 

  17. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010;35:591–604.

    Article  PubMed  Google Scholar 

  18. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC. Psychiatric aspects of impulsivity. Am J Psychiatry. 2001;158:1783–93.

    Article  CAS  PubMed  Google Scholar 

  19. Liljegren M, Landqvist Waldö M, Frizell Santillo A, Ullén S, Rydbeck R, Miller B, et al. Association of neuropathologically confirmed frontotemporal dementia and alzheimer disease with criminal and socially inappropriate behavior in a swedish cohort. JAMA Netw Open. 2019;2: e190261.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Finger EC. Frontotemporal dementias. Contin Minneap Minn. 2016;22:464–89.

    Google Scholar 

  21. Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J. Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology. 2008;71:736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheelakumari R, Bineesh C, Varghese T, Kesavadas C, Verghese J, Mathuranath PS. Neuroanatomical correlates of apathy and disinhibition in behavioural variant frontotemporal dementia. Brain Imaging Behav. 2020;14:2004–11.

    Article  PubMed  Google Scholar 

  23. Passamonti L, Lansdall C, Rowe J. The neuroanatomical and neurochemical basis of apathy and impulsivity in frontotemporal lobar degeneration. Curr Opin Behav Sci. 2018;22:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harlow JM. Recovery from the passage of an iron bar through the head. Hist Psychiatry. 1993;4:274–81.

    Article  Google Scholar 

  25. Cummings JL. Anatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci. 1995;769:1–13.

    Article  CAS  PubMed  Google Scholar 

  26. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123:2189–202.

    Article  PubMed  Google Scholar 

  27. Franceschi M, Anchisi D, Pelati O, Zuffi M, Matarrese M, Moresco RM, et al. Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol. 2005;57:216–25.

    Article  CAS  PubMed  Google Scholar 

  28. Dias R, Robbins TW, Roberts AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996;380:69–72.

    Article  CAS  PubMed  Google Scholar 

  29. Chamberlain SR, Müller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science. 2006;311:861–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jean-Richard-Dit-Bressel P, McNally GP. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning. Learn Mem. 2016;23:607–17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morgane PJ, Galler JR, Mokler DJ. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol. 2005;75:143–60.

    Article  PubMed  Google Scholar 

  32. Rubia K, Smith AB, Brammer MJ, Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003;20:351–8.

    Article  PubMed  Google Scholar 

  33. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci. 2007;27:3743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain J Neurol. 2018;141:1263–85.

    Article  Google Scholar 

  35. Huey ED, Putnam KT, Grafman J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology. 2006;66:17–22.

    Article  CAS  PubMed  Google Scholar 

  36. Sparks DL, Markesbery WR. Altered serotonergic and cholinergic synaptic markers in Pick’s disease. Arch Neurol. 1991;48:796–9.

    Article  CAS  PubMed  Google Scholar 

  37. Bowen DM, Procter AW, Mann DMA, Snowden JS, Esiri MM, Neary D, et al. Imbalance of a serotonergic system in frontotemporal dementia: implication for pharmacotherapy. Psychopharmacology. 2008;196:603–10.

    Article  CAS  PubMed  Google Scholar 

  38. Frisoni GB, Pizzolato G, Bianchetti A, Chierichetti F, Ferlin G, Battistin L, et al. Single photon emission computed tomography with [99Tc]-HM-PAO and [123I]-IBZM in Alzheimer’s disease and dementia of frontal type: preliminary results. Acta Neurol Scand. 1994;89:199–203.

    Article  CAS  PubMed  Google Scholar 

  39. Rinne JO, Laine M, Kaasinen V, Norvasuo-Heilä MK, Någren K, Helenius H. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology. 2002;58:1489–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kanazawa I, Kwak S, Sasaki H, Muramoto O, Mizutani T, Hori A, et al. Studies on neurotransmitter markers of the basal ganglia in Pick’s disease, with special reference to dopamine reduction. J Neurol Sci. 1988;83:63–74.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeiren Y, Janssens J, Aerts T, Martin J-J, Sieben A, Van Dam D, et al. Brain serotonergic and noradrenergic deficiencies in behavioral variant frontotemporal dementia compared to early-onset Alzheimer’s disease. J Alzheimers Dis. 2016;53:1079–96.

    Article  CAS  PubMed  Google Scholar 

  42. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108.

    Article  CAS  PubMed  Google Scholar 

  43. Erecińska M, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol. 1990;35:245–96.

    Article  PubMed  Google Scholar 

  44. Woodcock EA, Anand C, Khatib D, Diwadkar VA, Stanley JA. Working memory modulates glutamate levels in the dorsolateral prefrontal cortex during 1H fMRS. Front Psychiatry. 2018. https://doi.org/10.3389/fpsyt.2018.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci. 2002;5:633–9.

    Article  CAS  PubMed  Google Scholar 

  46. Warmus BA, Sekar DR, McCutchen E, Schellenberg GD, Roberts RC, McMahon LL, et al. Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. J Neurosci. 2014;34:16482–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ernst T, Chang L, Melchor R, Mehringer CM. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology. 1997;203:829–36.

    Article  CAS  PubMed  Google Scholar 

  48. Sarac H, Zagar M, Vranjes D, Henigsberg N, Bilić E, Pavlisa G. Magnetic resonance imaging and magnetic resonance spectroscopy in a patient with amyotrophic lateral sclerosis and frontotemporal dementia. Coll Antropol. 2008;32(Suppl 1):205–10.

    CAS  PubMed  Google Scholar 

  49. Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, et al. Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-06117-y.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Curtis DR, Watkins JC. The pharmacology of amino acids related to gamma-aminobutyric acid. Pharmacol Rev. 1965;17:347–91.

    CAS  PubMed  Google Scholar 

  51. Hermans L, Leunissen I, Pauwels L, Cuypers K, Peeters R, Puts NAJ, et al. Brain GABA levels are associated with inhibitory control deficits in older adults. J Neurosci. 2018;38:7844–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murley AG, Rouse MA, Jones PS, Ye R, Hezemans FH, O’Callaghan C, et al. GABA and glutamate deficits from frontotemporal lobar degeneration are associated with disinhibition. Brain. 2020;143:3449–62.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Swartz JR, Miller BL, Lesser IM, Darby AL. Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry. 1997;58:212–6.

    Article  CAS  PubMed  Google Scholar 

  54. Herrmann N, Black SE, Chow T, Cappell J, Tang-Wai DF, Lanctôt KL. Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am J Geriatr Psychiatry. 2012;20:789–97.

    Article  PubMed  Google Scholar 

  55. Hughes LE, Rittman T, Regenthal R, Robbins TW, Rowe JB. Improving response inhibition systems in frontotemporal dementia with citalopram. Brain J Neurol. 2015;138:1961–75.

    Article  Google Scholar 

  56. Deakin JB, Rahman S, Nestor PJ, Hodges JR, Sahakian BJ. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology. 2004;172:400–8.

    Article  CAS  PubMed  Google Scholar 

  57. Stahl SM. Mechanism of action of trazodone: a multifunctional drug. CNS Spectr. 2009;14:536–46.

    Article  PubMed  Google Scholar 

  58. Lebert F, Stekke W, Hasenbroekx C, Pasquier F. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord. 2004;17:355–9.

    Article  CAS  PubMed  Google Scholar 

  59. Rahman S, Robbins TW, Hodges JR, Mehta MA, Nestor PJ, Clark L, et al. Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology. 2006;31:651–8.

    Article  CAS  PubMed  Google Scholar 

  60. Huey ED, Garcia C, Wassermann EM, Tierney MC, Grafman J. Stimulant treatment of frontotemporal dementia in 8 patients. J Clin Psychiatry. 2008;69:1981–2.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reeves RR, Perry CL. Aripiprazole for sexually inappropriate vocalizations in frontotemporal dementia. J Clin Psychopharmacol. 2013;33:145–6.

    Article  PubMed  Google Scholar 

  62. Kuehn BM. FDA warns antipsychotic drugs may be risky for elderly. JAMA. 2005;293:2462.

    Article  CAS  PubMed  Google Scholar 

  63. Czarnecki K, Kumar N, Josephs KA. Parkinsonism and tardive antecollis in frontotemporal dementia–increased sensitivity to newer antipsychotics? Eur J Neurol. 2008;15:199–201.

    Article  CAS  PubMed  Google Scholar 

  64. Moretti R, Torre P, Antonello RM, Cattaruzza T, Cazzato G, Bava A. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging. 2004;21:931–7.

    Article  CAS  PubMed  Google Scholar 

  65. Mendez MF, Shapira JS, McMurtray A, Licht E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry. 2007;15:84–7.

    Article  PubMed  Google Scholar 

  66. Kertesz A, Morlog D, Light M, Blair M, Davidson W, Jesso S, et al. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord. 2008;25:178–85.

    Article  CAS  PubMed  Google Scholar 

  67. Boxer AL, Knopman DS, Kaufer DI, Grossman M, Onyike C, Graf-Radford N, et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2013;12:149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li P, Quan W, Zhou Y-Y, Wang Y, Zhang H-H, Liu S. Efficacy of memantine on neuropsychiatric symptoms associated with the severity of behavioral variant frontotemporal dementia: a six-month, open-label, self-controlled clinical trial. Exp Ther Med. 2016;12:492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Devanand DP, Pelton GH, D’Antonio K, Strickler JG, Kreisl WC, Noble J, et al. Low-dose lithium treatment for agitation and psychosis in Alzheimer’s disease and frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord. 2017;31:73–5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gonin R. A pilot trial of lithium in subjects with progressive supranuclear palsy or corticobasal degeneration | National Institute of Neurological Disorders and Stroke. 2015. https://www.ninds.nih.gov/Disorders/Clinical-Trials/Pilot-Trial-Lithium-Subjects-Progressive-Supranuclear-Palsy-or. Accessed 26 Apr 2021

  71. Ames D, Cummings JL, Wirshing WC, Quinn B, Mahler M. Repetitive and compulsive behavior in frontal lobe degenerations. J Neuropsychiatry Clin Neurosci. 1994;6:100–13.

    Article  CAS  PubMed  Google Scholar 

  72. Mitchell E, Tavares TP, Palaniyappan L, Finger EC. Hoarding and obsessive-compulsive behaviours in frontotemporal dementia: clinical and neuroanatomic associations. Cortex. 2019;121:443–53.

    Article  PubMed  Google Scholar 

  73. Moheb N, Charuworn K, Ashla MM, Desarzant R, Chavez D, Mendez MF. Repetitive behaviors in frontotemporal dementia: compulsions or impulsions? J Neuropsychiatry Clin Neurosci. 2019;31:132–6.

    Article  PubMed  Google Scholar 

  74. Bozeat S, Gregory CA, Ralph MA, Hodges JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? J Neurol Neurosurg Psychiatry. 2000;69:178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perry DC, Whitwell JL, Boeve BF, Pankratz VS, Knopman DS, Petersen RC, et al. Voxel-based morphometry in patients with obsessive-compulsive behaviors in behavioral variant frontotemporal dementia. Eur J Neurol. 2012;19:911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. American Psychiatric Association. Obsessive-compulsive and related disorders. In: Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association; 2013. https://doi.org/10.1176/appi.books.9780890425596.dsm06

    Chapter  Google Scholar 

  77. Ahmed RM, Irish M, Henning E, Dermody N, Bartley L, Kiernan MC, et al. Assessment of eating behavior disturbance and associated neural networks in frontotemporal dementia. JAMA Neurol. 2016;73:282–90.

    Article  PubMed  Google Scholar 

  78. Piguet O. Eating disturbance in behavioural-variant frontotemporal dementia. J Mol Neurosci MN. 2011;45:589–93.

    Article  CAS  PubMed  Google Scholar 

  79. Leckman JF, Denys D, Simpson HB, Mataix-Cols D, Hollander E, Saxena S, et al. Obsessive-compulsive disorder: a review of the diagnostic criteria and possible subtypes and dimensional specifiers for DSM-V. Depress Anxiety. 2010;27:507–27.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stein DJ, Kogan CS, Atmaca M, Fineberg NA, Fontenelle LF, Grant JE, et al. The classification of obsessive-compulsive and related disorders in the ICD-11. J Affect Disord. 2016;190:663–74.

    Article  CAS  PubMed  Google Scholar 

  81. Saxena S, Brody AL, Schwartz JM, Baxter LR. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl. 1998;35:26–37.

    Article  Google Scholar 

  82. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32:525–49.

    Article  PubMed  Google Scholar 

  83. Baxter LR, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry. 1987;44:211–8.

    Article  PubMed  Google Scholar 

  84. Kwon JS, Kim J-J, Lee DW, Lee JS, Lee DS, Kim M-S, et al. Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive-compulsive disorder. Psychiatry Res. 2003;122:37–47.

    Article  PubMed  Google Scholar 

  85. Whiteside SP, Port JD, Abramowitz JS. A meta–analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2004;132:69–79.

    Article  Google Scholar 

  86. Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M, et al. Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Arch Gen Psychiatry. 1999;56:913–9.

    Article  CAS  PubMed  Google Scholar 

  87. Figee M, Luigjes J, Smolders R, Valencia-Alfonso C-E, van Wingen G, de Kwaasteniet B, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci. 2013;16:386–7.

    Article  CAS  PubMed  Google Scholar 

  88. Rasgon A, Lee WH, Leibu E, Laird A, Glahn D, Goodman W, et al. Neural correlates of affective and non-affective cognition in obsessive compulsive disorder: a meta-analysis of functional imaging studies. Eur Psychiatry. 2017;46:25–32.

    Article  CAS  PubMed  Google Scholar 

  89. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, et al. Obsessive–compulsive disorder. Nat Rev Dis Primer. 2019;5:1–21.

    Google Scholar 

  90. Woolley JD, Khan BK, Natesan A, Karydas A, Dallman M, Havel P, et al. Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia. Neurology. 2014;82:512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahmed RM, Latheef S, Bartley L, Irish M, Halliday GM, Kiernan MC, et al. Eating behavior in frontotemporal dementia: peripheral hormones vs hypothalamic pathology. Neurology. 2015;85:1310–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet. 1997;17:273–4.

    Article  CAS  PubMed  Google Scholar 

  93. Wu K, Hanna GL, Rosenberg DR, Arnold PD. The role of glutamate signalling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav. 2012;100:726–35.

    Article  CAS  PubMed  Google Scholar 

  94. Ikeda M, Shigenobu K, Fukuhara R, Hokoishi K, Maki N, Nebu A, et al. Efficacy of fluvoxamine as a treatment for behavioral symptoms in frontotemporal lobar degeneration patients. Dement Geriatr Cogn Disord. 2004;17:117–21.

    Article  CAS  PubMed  Google Scholar 

  95. Mendez MF, Shapira JS, Miller BL. Stereotypical movements and frontotemporal dementia. Mov Disord. 2005;20:742–5.

    Article  PubMed  Google Scholar 

  96. Ackerman DL, Greenland S. Multivariate meta-analysis of controlled drug studies for obsessive-compulsive disorder. J Clin Psychopharmacol. 2002;22:309–17.

    Article  CAS  PubMed  Google Scholar 

  97. Furlan JC, Henri-Bhargava A, Freedman M. Clomipramine in the treatment of compulsive behavior in frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord. 2014;28:95–8.

    Article  PubMed  Google Scholar 

  98. Fonseca L, Simões S, Ferreira P, Mesquita J, Machado A. Ciproterone effect on compulsive masturbation in a frontotemporal dementia patient. J Neuropsychiatry Clin Neurosci. 2010;22:352.e3.

    Article  Google Scholar 

  99. Pompanin S, Jelcic N, Cecchin D, Cagnin A. Impulse control disorders in frontotemporal dementia: spectrum of symptoms and response to treatment. Gen Hosp Psychiatry. 2014;36(760):e5-7.

    Google Scholar 

  100. Shinagawa S, Tsuno N, Nakayama K. Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate. Psychogeriatrics. 2013;13:58–61.

    Article  PubMed  Google Scholar 

  101. Robert P, Onyike CU, Leentjens AFG, Dujardin K, Aalten P, Starkstein S, et al. Proposed diagnostic criteria for apathy in Alzheimer’s disease and other neuropsychiatric disorders. Eur Psychiatry. 2009;24:98–104.

    Article  CAS  PubMed  Google Scholar 

  102. Massimo L, Powers JP, Evans LK, McMillan CT, Rascovsky K, Eslinger P, et al. Apathy in frontotemporal degeneration: neuroanatomical evidence of impaired goal-directed behavior. Front Hum Neurosci. 2015. https://doi.org/10.3389/fnhum.2015.00611.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Husain M, Roiser JP. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat Rev Neurosci. 2018;19:470–84.

    Article  CAS  PubMed  Google Scholar 

  104. Ducharme S, Price BH, Dickerson BC. Apathy: a neurocircuitry model based on frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2018;89:389–96.

    Article  PubMed  Google Scholar 

  105. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex N Y N. 1991;2006(16):916–28.

    Google Scholar 

  106. Merrilees J, Dowling GA, Hubbard E, Mastick J, Ketelle R, Miller BL. Characterization of apathy in persons with frontotemporal dementia and the impact on family caregivers. Alzheimer Dis Assoc Disord. 2013;27:62–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cohen RA, Kaplan RF, Zuffante P, Moser DJ, Jenkins MA, Salloway S, et al. Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. J Neuropsychiatry Clin Neurosci. 1999;11:444–53.

    Article  CAS  PubMed  Google Scholar 

  108. Siegel JS, Snyder AZ, Metcalf NV, Fucetola RP, Hacker CD, Shimony JS, et al. The circuitry of abulia: Insights from functional connectivity MRI. NeuroImage Clin. 2014;6:320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Le Heron C, Apps MAJ, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia. 2018;118:54–67.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kumfor F, Zhen A, Hodges JR, Piguet O, Irish M. Apathy in Alzheimer’s disease and frontotemporal dementia: distinct clinical profiles and neural correlates. Cortex. 2018;103:350–9.

    Article  PubMed  Google Scholar 

  111. Rosen HJ, Allison SC, Schauer GF, Gorno-Tempini ML, Weiner MW, Miller BL. Neuroanatomical correlates of behavioural disorders in dementia. Brain J Neurol. 2005;128:2612–25.

    Article  Google Scholar 

  112. Wei G, Irish M, Hodges JR, Piguet O, Kumfor F. Disease-specific profiles of apathy in Alzheimer’s disease and behavioural-variant frontotemporal dementia differ across the disease course. J Neurol. 2019. https://doi.org/10.1007/s00415-019-09679-1.

    Article  PubMed  Google Scholar 

  113. Hare TA, Camerer CF, Knoepfle DT, O’Doherty JP, Rangel A. Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. J Neurosci. 2010;30:583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015;14:518–31.

    Article  PubMed  Google Scholar 

  115. Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2020;2:fcaa196.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26:321–52.

    Article  PubMed  Google Scholar 

  117. Marschner A, Mell T, Wartenburger I, Villringer A, Reischies FM, Heekeren HR. Reward-based decision-making and aging. Brain Res Bull. 2005;67:382–90.

    Article  CAS  PubMed  Google Scholar 

  118. Craig ADB. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  PubMed  Google Scholar 

  119. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493:154–66.

    Article  PubMed  Google Scholar 

  120. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

    Article  CAS  PubMed  Google Scholar 

  121. Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct. 2010;6:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  123. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30:194–202.

    Article  PubMed  CAS  Google Scholar 

  124. Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30:220–7.

    Article  CAS  PubMed  Google Scholar 

  125. Kertesz A, McMonagle P, Jesso S. Extrapyramidal syndromes in frontotemporal degeneration. J Mol Neurosci. 2011;45:336–42.

    Article  CAS  PubMed  Google Scholar 

  126. Sjögren M, Minthon L, Passant U, Blennow K, Wallin A. Decreased monoamine metabolites in frontotemporal dementia and Alzheimer’s disease. Neurobiol Aging. 1998;19:379–84.

    Article  PubMed  Google Scholar 

  127. Yang Y, Schmitt HP. Frontotemporal dementia: evidence for impairment of ascending serotoninergic but not noradrenergic innervation. Immunocytochemical and quantitative study using a graph method. Acta Neuropathol (Berl). 2001;101:256–70.

    Article  CAS  Google Scholar 

  128. Mele B, Van S, Holroyd-Leduc J, Ismail Z, Pringsheim T, Goodarzi Z. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10: e037632.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Callegari I, Mattei C, Benassi F, Krueger F, Grafman J, Yaldizli Ö, et al. Agomelatine improves apathy in frontotemporal dementia. Neurodegener Dis. 2016;16:352–6.

    Article  CAS  PubMed  Google Scholar 

  130. Racagni G, Riva MA, Molteni R, Musazzi L, Calabrese F, Popoli M, et al. Mode of action of agomelatine: synergy between melatonergic and 5-HT2C receptors. World J Biol Psychiatry. 2011;12:574–87.

    Article  PubMed  Google Scholar 

  131. Swanberg MM. Memantine for behavioral disturbances in frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord. 2007;21:164–6.

    Article  PubMed  Google Scholar 

  132. Lin C-P, Chu C-P, Liu H-C. Bupropion improved apathy in behavioral variant frontotemporal dementia: a case report. Neurocase. 2016;22:466–8.

    Article  PubMed  Google Scholar 

  133. Fellgiebel DA, Müller MJ, Hiemke C, Bartenstein P, Schreckenberger M. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry. 2007;8:123–6.

    Article  PubMed  Google Scholar 

  134. Kimura T, Hayashida H, Furukawa H, Takamatsu J. Pilot study of pharmacological treatment for frontotemporal dementia: effect of Yokukansan on behavioral symptoms. Psychiatry Clin Neurosci. 2010;64:207–10.

    Article  PubMed  Google Scholar 

  135. Pardini M, Serrati C, Guida S, Mattei C, Abate L, Massucco D, et al. Souvenaid reduces behavioral deficits and improves social cognition skills in frontotemporal dementia: a proof-of-concept study. Neurodegener Dis. 2015;15:58–62.

    Article  PubMed  Google Scholar 

  136. Rankin KP, Kramer JH, Miller BL. Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cogn Behav Neurol. 2005;18:28–36.

    Article  PubMed  Google Scholar 

  137. Finger EC. New potential therapeutic approaches in frontotemporal dementia: oxytocin, vasopressin, and social cognition. J Mol Neurosci. 2011;45:696–701.

    Article  CAS  PubMed  Google Scholar 

  138. Eisenberg N, Fabes RA. Prosocial behavior and empathy: a multimethod developmental perspective. In: Prosocial behavior. Thousand Oaks: Sage Publications Inc; 1991. p. 34–61.

    Google Scholar 

  139. Decety J. The neurodevelopment of empathy in humans. Dev Neurosci. 2010;32:257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shamay-Tsoory SG. The neural bases for empathy. Neuroscientist. 2011;17:18–24.

    Article  PubMed  Google Scholar 

  141. Shdo SM, Ranasinghe KG, Gola KA, Mielke CJ, Sukhanov PV, Miller BL, et al. Deconstructing empathy: neuroanatomical dissociations between affect sharing and prosocial motivation using a patient lesion model. Neuropsychologia. 2018;116:126–35.

    Article  PubMed  Google Scholar 

  142. Rosen HJ, Pace-Savitsky K, Perry RJ, Kramer JH, Miller BL, Levenson RW. Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. Dement Geriatr Cogn Disord. 2004;17:277–81.

    Article  PubMed  Google Scholar 

  143. Bora E, Walterfang M, Velakoulis D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer’s disease: a meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86:714–9.

    Article  PubMed  Google Scholar 

  144. Kumfor F, Piguet O. Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings. Neuropsychol Rev. 2012;22:280–97.

    Article  PubMed  Google Scholar 

  145. Rankin KP, Gorno-Tempini ML, Allison SC, Stanley CM, Glenn S, Weiner MW, et al. Structural anatomy of empathy in neurodegenerative disease. Brain J Neurol. 2006;129:2945–56.

    Article  Google Scholar 

  146. Leigh R, Oishi K, Hsu J, Lindquist M, Gottesman RF, Jarso S, et al. Acute lesions that impair affective empathy. Brain. 2013;136:2539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tippett DC, Godin BR, Oishi K, Oishi K, Davis C, Gomez Y, et al. Impaired recognition of emotional faces after stroke involving right Amygdala or Insula. Semin Speech Lang. 2018;39:87–100.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Virani K, Jesso S, Kertesz A, Mitchell D, Finger E. Functional neural correlates of emotional expression processing deficits in behavioural variant frontotemporal dementia. J Psychiatry Neurosci. 2013;38:174–82.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Snowden JS, Austin NA, Sembi S, Thompson JC, Craufurd D, Neary D. Emotion recognition in Huntington’s disease and frontotemporal dementia. Neuropsychologia. 2008;46:2638–49.

    Article  CAS  PubMed  Google Scholar 

  150. Dermody N, Wong S, Ahmed R, Piguet O, Hodges JR, Irish M. Uncovering the neural bases of cognitive and affective empathy deficits in Alzheimer’s disease and the behavioral-variant of frontotemporal dementia. J Alzheimers Dis. 2016;53:801–16.

    Article  PubMed  Google Scholar 

  151. Carr AR, Mendez MF. Affective empathy in behavioral variant frontotemporal dementia: a meta-analysis. Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.00417.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Decety J, Bartal IB-A, Uzefovsky F, Knafo-Noam A. Empathy as a driver of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. Philos Trans R Soc B Biol Sci. 2016. https://doi.org/10.1098/rstb.2015.0077.

    Article  Google Scholar 

  153. Eisenberg N, Miller PA. The relation of empathy to prosocial and related behaviors. Psychol Bull. 1987;101:91–119.

    Article  CAS  PubMed  Google Scholar 

  154. Lee R, Ferris C, Van de Kar LD, Coccaro EF. Cerebrospinal fluid oxytocin, life history of aggression, and personality disorder. Psychoneuroendocrinology. 2009;34:1567–73.

    Article  CAS  PubMed  Google Scholar 

  155. Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron. 2012;76:142–59.

    Article  CAS  PubMed  Google Scholar 

  156. Benarroch EE. Oxytocin and vasopressin: social neuropeptides with complex neuromodulatory functions. Neurology. 2013;80:1521–8.

    Article  PubMed  Google Scholar 

  157. Boccia ML, Petrusz P, Suzuki K, Marson L, Pedersen CA. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience. 2013;253:155–64.

    Article  CAS  PubMed  Google Scholar 

  158. Freeman SM, Walum H, Inoue K, Smith AL, Goodman MM, Bales KL, et al. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience. 2014;273:12–23.

    Article  CAS  PubMed  Google Scholar 

  159. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435:673–6.

    Article  CAS  PubMed  Google Scholar 

  160. Fischer-Shofty M, Levkovitz Y, Shamay-Tsoory SG. Oxytocin facilitates accurate perception of competition in men and kinship in women. Soc Cogn Affect Neurosci. 2013;8:313–7.

    Article  PubMed  Google Scholar 

  161. Shamay-Tsoory SG, Fischer M, Dvash J, Harari H, Perach-Bloom N, Levkovitz Y. Intranasal administration of oxytocin increases envy and schadenfreude (gloating). Biol Psychiatry. 2009;66:864–70.

    Article  CAS  PubMed  Google Scholar 

  162. Gamer M, Zurowski B, Büchel C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc Natl Acad Sci USA. 2010;107:9400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen X, Hackett PD, DeMarco AC, Feng C, Stair S, Haroon E, et al. Effects of oxytocin and vasopressin on the neural response to unreciprocated cooperation within brain regions involved in stress and anxiety in men and women. Brain Imaging Behav. 2016;10:581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Thompson R, Gupta S, Miller K, Mills S, Orr S. The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology. 2004;29:35–48.

    Article  CAS  PubMed  Google Scholar 

  165. Umbricht D, del Valle RM, Hollander E, McCracken JT, Shic F, Scahill L, et al. A single dose, randomized, controlled proof-of-mechanism study of a novel vasopressin 1a receptor antagonist (RG7713) in high-functioning adults with autism spectrum disorder. Neuropsychopharmacology. 2017;42:1914–23.

    Article  CAS  PubMed  Google Scholar 

  166. Liu Y, Wang ZX. Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience. 2003;121:537–44.

    Article  CAS  PubMed  Google Scholar 

  167. Shamay-Tsoory SG, Abu-Akel A. The social salience hypothesis of oxytocin. Biol Psychiatry. 2016;79:194–202.

    Article  CAS  PubMed  Google Scholar 

  168. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501:179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Husarova VM, Lakatosova S, Pivovarciova A, Babinska K, Bakos J, Durdiakova J, et al. Plasma oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Investig. 2016;13:174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hammock E, Veenstra-VanderWeele J, Yan Z, Kerr TM, Morris M, Anderson GM, et al. Examining autism spectrum disorders by biomarkers: example from the oxytocin and serotonin systems. J Am Acad Child Adolesc Psychiatry. 2012;51:712-721.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Finger EC, MacKinley J, Blair M, Oliver LD, Jesso S, Tartaglia MC, et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology. 2015;84:174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Finger E, Berry S, Cummings J, Coleman K, Hsiung R, Feldman HH, et al. Adaptive crossover designs for assessment of symptomatic treatments targeting behaviour in neurodegenerative disease: a phase 2 clinical trial of intranasal oxytocin for frontotemporal dementia (FOXY). Alzheimers Res Ther. 2018. https://doi.org/10.1186/s13195-018-0427-2.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Oliver LD, Stewart C, Coleman K, Kryklywy JH, Bartha R, Mitchell DGV, et al. Neural effects of oxytocin and mimicry in frontotemporal dementia: a randomized crossover study. Neurology. 2020;95:e2635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O’Keeffe FM, Murray B, Coen RF, Dockree PM, Bellgrove MA, Garavan H, et al. Loss of insight in frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy. Brain J Neurol. 2007;130:753–64.

    Article  Google Scholar 

  175. Hornberger M, Yew B, Gilardoni S, Mioshi E, Gleichgerrcht E, Manes F, et al. Ventromedial-frontopolar prefrontal cortex atrophy correlates with insight loss in frontotemporal dementia and Alzheimer’s disease. Hum Brain Mapp. 2014;35:616–26.

    Article  PubMed  Google Scholar 

  176. Muñoz-Neira C, Tedde A, Coulthard E, Thai NJ, Pennington C. Neural correlates of altered insight in frontotemporal dementia: a systematic review. NeuroImage Clin. 2019;24: 102066.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Babinski J. Anosognosie. Paris: Revue Neurologique; 1918.

    Google Scholar 

  178. Schmitz TW, Kawahara-Baccus TN, Johnson SC. Metacognitive evaluation, self-relevance, and the right prefrontal cortex. Neuroimage. 2004;22:941–7.

    Article  PubMed  Google Scholar 

  179. Zamboni G, Grafman J, Krueger F, Knutson KM, Huey ED. Anosognosia for behavioral disturbances in frontotemporal dementia and corticobasal syndrome: a voxel-based morphometry study. Dement Geriatr Cogn Disord. 2010;29:88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shany-Ur T, Lin N, Rosen HJ, Sollberger M, Miller BL, Rankin KP. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention. Brain J Neurol. 2014;137:2368–81.

    Article  Google Scholar 

  181. Levy S, Gansler D, Huey E, Wassermann E, Grafman J. Assessment of patient self-awareness and related neural correlates in frontotemporal dementia and corticobasal syndrome. Arch Clin Neuropsychol. 2017;33:519–29.

    Article  PubMed Central  Google Scholar 

  182. Bush G, Luu P, Posner M. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.

    Article  CAS  PubMed  Google Scholar 

  183. Rosen HJ, Alcantar O, Rothlind J, Sturm V, Kramer JH, Weiner M, et al. Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease. Neuroimage. 2010;49:3358.

    Article  PubMed  Google Scholar 

  184. Noonan MP, Mars RB, Rushworth MFS. Distinct roles of three frontal cortical areas in reward-guided behavior. J Neurosci. 2011;31:14399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Massimo L, Libon DJ, Chandrasekaran K, Dreyfuss M, McMillan CT, Rascovsky K, et al. Self-appraisal in behavioural variant frontotemporal degeneration. J Neurol Neurosurg Psychiatry. 2013;84:148–53.

    Article  PubMed  Google Scholar 

  186. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage. 2006;31:440–57.

    Article  PubMed  Google Scholar 

  187. Pijnenborg GHM, de Vos AE, Timmerman ME, Van der Gaag M, Sportel BE, Arends J, et al. Social cognitive group treatment for impaired insight in psychosis: a multicenter randomized controlled trial. Schizophr Res. 2019;206:362–9.

    Article  CAS  PubMed  Google Scholar 

  188. Ducharme S, Dols A, Laforce R, Devenney E, Kumfor F, van den Stock J, et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain J Neurol. 2020;143:1632–50.

    Article  Google Scholar 

  189. Gossink FT, Vijverberg EG, Krudop W, Scheltens P, Stek ML, Pijnenburg YA, et al. Psychosis in behavioral variant frontotemporal dementia. Neuropsychiatr Dis Treat. 2017;13:1099–106.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kertesz A, Ang LC, Jesso S, MacKinley J, Baker M, Brown P, et al. Psychosis and hallucinations in frontotemporal dementia with the C9ORF72 mutation: a detailed clinical cohort. Cogn Behav Neurol. 2013;26:146–54.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shinagawa S, Nakajima S, Plitman E, Graff-Guerrero A, Mimura M, Nakayama K, et al. Psychosis in frontotemporal dementia. J Alzheimers Dis. 2014;42:485–99.

    Article  PubMed  Google Scholar 

  192. Naasan G, Shdo SM, Rodriguez EM, Spina S, Grinberg L, Lopez L, et al. Psychosis in neurodegenerative disease: differential patterns of hallucination and delusion symptoms. Brain J Neurol. 2021. https://doi.org/10.1093/brain/awaa413.

    Article  Google Scholar 

  193. Devenney EM, Landin-Romero R, Irish M, Hornberger M, Mioshi E, Halliday GM, et al. The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage Clin. 2017;13:439–45.

    Article  PubMed  Google Scholar 

  194. Sellami L, Bocchetta M, Masellis M, Cash DM, Dick KM, van Swieten J, et al. Distinct neuroanatomical correlates of neuropsychiatric symptoms in the three main forms of genetic frontotemporal dementia in the GENFI cohort. J Alzheimers Dis. 2018;65:147–63.

    PubMed  PubMed Central  Google Scholar 

  195. Shinagawa S, Naasan G, Karydas AM, Coppola G, Pribadi M, Seeley WW, et al. Clinicopathological study of patients with C9ORF72-associated frontotemporal dementia presenting with delusions. J Geriatr Psychiatry Neurol. 2015;28:99–107.

    Article  PubMed  Google Scholar 

  196. Pijnenburg YL, Sampson EL, Harvey RJ, Fox NC, Rossor MN. Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. Int J Geriatr Psychiatry. 2003;18:67–72.

    Article  CAS  PubMed  Google Scholar 

  197. Mintzer JE, Tune LE, Breder CD, Swanink R, Marcus RN, McQuade RD, et al. Aripiprazole for the treatment of psychoses in institutionalized patients with Alzheimer dementia: a multicenter, randomized, double-blind, placebo-controlled assessment of three fixed doses. Am J Geriatr Psychiatry. 2007;15:918–31.

    Article  PubMed  Google Scholar 

  198. Tariot P, Foff EP, Cummings JL, Soto-Martin M-E, McEvoy B, Stankovic S. HARMONY study: pimavanserin significantly prolongs time to relapse of dementia-related psychosis. Innov Aging. 2020;4:163–4.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Finger.

Ethics declarations

Funding

Physician Services Incorporated Foundation Clinical Research Award to Dr E. Finger, and CIHR grant #363926.

Conflicts of interest/Competing interests

Dr Le has no conflicts to report. Dr Finger has received personal compensation for serving on a Scientific Advisory Committee for Biogen, Vigil Neuro, and Denali Therapeutics, for serving as a section editor for NeuroImage Clinical, and for serving as a course director for the AAN Annual Meeting. Dr Finger has received research support paid to her institution (UWO) from CIHR and the Weston Foundation to conduct an ongoing study of oxytocin in FTD, from Alzheimer Society of Canada, and the Physicians and Services Incorporated Foundation, the Ministry of Research and Innovation of Ontario for research, and for site participation in clinical trials sponsored by Alector, Biogen, and TauRx.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not applicable.

Authors' contributions

C. Le and E. Finger were involved in the concept, literature review, design, writing and critical revision of this manuscript. Both authors approve the final version of the manuscript for submission and publication and are accountable for information provided in the manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, C., Finger, E. Pharmacotherapy for Neuropsychiatric Symptoms in Frontotemporal Dementia. CNS Drugs 35, 1081–1096 (2021). https://doi.org/10.1007/s40263-021-00854-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00854-5

Navigation