Skip to main content
Log in

Investigational Agents in Development for the Treatment of Geographic Atrophy Secondary to Age-Related Macular Degeneration

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Geographic atrophy (GA) is an advanced form of age-related macular degeneration, a late-onset, complex, genetic degenerative disease of the retina. Multiple environmental and genetic factors have been implicated in the development of GA, a pathology ultimately defined by loss of photoreceptors and the underlying retinal pigment epithelium and choriocapillaris. The personal burden of GA has been documented to have a substantial negative impact on quality of life, with progressive and cumulative loss of visual function each year. Currently, there are no treatments to prevent or slow the development or progression of GA. Multiple genetic and histopathologic studies have implicated dysregulation of the complement cascade in GA pathogenesis, leading to the development of several investigational pharmaceuticals targeting key factors in this inflammatory pathway. Several other biochemical pathways have also been implicated in GA development and progression, such as mitochondrial components, mediators of apoptosis and molecules involved in extracellular matrix remodeling, many of which are also being investigated for their potential value as therapeutic targets for GA treatment. Recent advancements in our understanding of GA pathogenesis and the progression of multiple potential therapeutics into later-stage human clinical trials hold great promise for a clinically effective therapeutic for patients with GA to emerge within the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1992;99:933–43. https://doi.org/10.1016/s0161-6420(92)31871-8.

    Article  CAS  PubMed  Google Scholar 

  2. Kahn HA, Leibowitz HM, Ganley JP, et al. The Framingham Eye Study. I. Outline and major prevalence findings. Am J Epidemiol. 1977;106:17–32. https://doi.org/10.1093/oxfordjournals.aje.a112428.

    Article  CAS  PubMed  Google Scholar 

  3. Klein BE, Klein R. Cataracts and macular degeneration in older Americans. Arch Ophthalmol. 1982;100:571–3. https://doi.org/10.1001/archopht.1982.01030030573002.

    Article  CAS  PubMed  Google Scholar 

  4. Congdon N, O’Colmain B, Klaver CCW, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477–85. https://doi.org/10.1001/archopht.122.4.477.

    Article  PubMed  Google Scholar 

  5. Pascolini D, Mariotti SP, Pokharel GP, et al. 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol. 2004;11:67–115. https://doi.org/10.1076/opep.11.2.67.28158.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman DS, O’Colmain BJ, Muñoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122:564–72. https://doi.org/10.1001/archopht.122.4.564.

    Article  PubMed  Google Scholar 

  7. Age-Related Macular Degeneration (AMD) Tables. In: Natl. Eye Inst. Natl. Inst. Health (2020). https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/age-related-macular-degeneration-amd-data-and-statistics/age-related-macular-degeneration-amd-tables. Accessed 14 Feb 2020.

  8. Klein R, Meuer SM, Knudtson MD, Klein BEK. The epidemiology of progression of pure geographic atrophy: the Beaver Dam Eye Study. Am J Ophthalmol. 2008;146:692–9. https://doi.org/10.1016/j.ajo.2008.05.050.

    Article  PubMed  PubMed Central  Google Scholar 

  9. American Academy of Ophthalmology Retina/Vitreous Panel.Preferred Practice Pattern Guidelines. Age-Related Macular Degeneration. San Francisco: American Academy of Ophthalmology (2015). http://www.aao.org/ppp. Accessed 14 Feb 2020.

  10. Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38:450–71. https://doi.org/10.1080/07853890600946724.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Klein R, Klein BEK, Knudtson MD, et al. Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology. 2007;114:253–62. https://doi.org/10.1016/j.ophtha.2006.10.040.

    Article  PubMed  Google Scholar 

  12. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44. https://doi.org/10.1056/NEJMoa062655.

    Article  CAS  PubMed  Google Scholar 

  13. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48. https://doi.org/10.1016/j.ophtha.2012.09.006.

    Article  PubMed  Google Scholar 

  14. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119:1388–98. https://doi.org/10.1016/j.ophtha.2012.03.053.

  15. de Oliveira Dias JR, Zhang Q, Garcia JMB, et al. Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography. Ophthalmology. 2018;125:255–66. https://doi.org/10.1016/j.ophtha.2017.08.030.

    Article  PubMed  Google Scholar 

  16. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren CM. Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology. 2014;121:1079–91. https://doi.org/10.1016/j.ophtha.2013.11.023.

    Article  PubMed  Google Scholar 

  17. Chew EY, Clemons TE, Agrón E, et al. Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS Report No. 36. JAMA Ophthalmol. 2014;132:272. https://doi.org/10.1001/jamaophthalmol.2013.6636.

  18. Schmitz-Valckenberg S, Fleckenstein M, Helb H-M, et al. In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Investig Ophthalmol Vis Sci. 2009;50:3915–21. https://doi.org/10.1167/iovs.08-2484.

    Article  Google Scholar 

  19. Ferris FL, Wilkinson CP, Bird A, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51. https://doi.org/10.1016/j.ophtha.2012.10.036.

    Article  PubMed  Google Scholar 

  20. Sadda SR, Guymer R, Holz FG, et al. Consensus definition for atrophy associated with age-related macular degeneration on OCT. Ophthalmology. 2018;125:537–48. https://doi.org/10.1016/j.ophtha.2017.09.028.

    Article  PubMed  Google Scholar 

  21. Boyer DS, Schmidt-Erfurth U, van Lookeren CM, et al. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina. 2017;37:819–35. https://doi.org/10.1097/IAE.0000000000001392.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holz FG, Bellman C, Staudt S, et al. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Investig Ophthalmol Vis Sci. 2001;42:1051–6.

    CAS  Google Scholar 

  23. Bearelly S, Khanifar AA, Lederer DE, et al. Use of fundus autofluorescence images to predict geographic atrophy progression. Retina. 2011;31:81–6. https://doi.org/10.1097/IAE.0b013e3181e0958b.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brinkmann CK, Adrion C, Mansmann U, et al. Clinical characteristics, progression and risk factors of geographic atrophy. Ophthalmol Z Dtsch Ophthalmol Ges. 2010;107:999–1006. https://doi.org/10.1007/s00347-010-2158-z.

    Article  CAS  Google Scholar 

  25. Lindblad AS, Lloyd PC, Clemons TE, et al. (2009) Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26. Arch Ophthalmol. 1960;127:1168–74. https://doi.org/10.1001/archophthalmol.2009.198.

    Article  Google Scholar 

  26. Csaky KG, Richman EA, Ferris FL. Report from the NEI/FDA ophthalmic clinical trial design and endpoints symposium. Investig Ophthalmol Vis Sci. 2008;49:479–89. https://doi.org/10.1167/iovs.07-1132.

    Article  Google Scholar 

  27. Yehoshua Z, Rosenfeld PJ, Gregori G, et al. Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography. Ophthalmology. 2011;118:679–86. https://doi.org/10.1016/j.ophtha.2010.08.018.

    Article  PubMed  Google Scholar 

  28. Klein R, Klein BEK, Knudtson MD, et al. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthalmology. 2006;113:373–80. https://doi.org/10.1016/j.ophtha.2005.12.013.

    Article  PubMed  Google Scholar 

  29. Khan JC. Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation. Br J Ophthalmol. 2006;90:75–80. https://doi.org/10.1136/bjo.2005.073643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seddon JM, George S. Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol. 1960;124:995–1001. https://doi.org/10.1001/archopht.124.7.995.

    Article  Google Scholar 

  31. Tan JSL, Wang JJ, Flood V, et al. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115:334–41. https://doi.org/10.1016/j.ophtha.2007.03.083.

    Article  PubMed  Google Scholar 

  32. Seddon JM, Rosner B, Sperduto RD, et al. (2001) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol. 1960;119:1191–9. https://doi.org/10.1001/archopht.119.8.1191.

    Article  Google Scholar 

  33. Chong EW-T, Kreis AJ, Wong TY, et al. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol. 2008;1960(126):826–33. https://doi.org/10.1001/archopht.126.6.826.

    Article  Google Scholar 

  34. Zampatti S, Ricci F, Cusumano A, et al. Review of nutrient actions on age-related macular degeneration. Nutr Res N Y N. 2014;34:95–105. https://doi.org/10.1016/j.nutres.2013.10.011.

    Article  CAS  Google Scholar 

  35. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119:1417–36. https://doi.org/10.1001/archopht.119.10.1417.

  36. Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–18. https://doi.org/10.1016/j.preteyeres.2017.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lipecz A, Miller L, Kovacs I, et al. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience. 2019;41:813–45. https://doi.org/10.1007/s11357-019-00138-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthalmol. 1997;123:199–206. https://doi.org/10.1016/s0002-9394(14)71036-0.

    Article  CAS  PubMed  Google Scholar 

  39. Fritsche LG, Igl W, Bailey JNC, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:134–43. https://doi.org/10.1038/ng.3448.

    Article  CAS  PubMed  Google Scholar 

  40. Genome-Wide Association Studies Fact Sheet. In: Natl. Hum. Genome Res. Inst. https://www.genome.gov/about-genomics/fact-sheets/Genome-Wide-Association-Studies-Fact-Sheet. Accessed 24 Nov 2020.

  41. Black JRM, Clark SJ. Age-related macular degeneration: genome-wide association studies to translation. Genet Med Off J Am Coll Med Genet. 2016;18:283–9. https://doi.org/10.1038/gim.2015.70.

    Article  CAS  Google Scholar 

  42. Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45:433–439, 439e1–2. https://doi.org/10.1038/ng.2578.

  43. Friedrich U, Myers CA, Fritsche LG, et al. Risk- and non-risk-associated variants at the 10q26 AMD locus influence ARMS2 mRNA expression but exclude pathogenic effects due to protein deficiency. Hum Mol Genet. 2011;20:1387–99. https://doi.org/10.1093/hmg/ddr020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cameron DJ, Yang Z, Gibbs D, et al. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 2007;6:1122–5. https://doi.org/10.4161/cc.6.9.4157.

    Article  CAS  PubMed  Google Scholar 

  45. Sobrin L, Reynolds R, Yu Y, et al. ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am J Ophthalmol. 2011;151:345-352.e3. https://doi.org/10.1016/j.ajo.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  46. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92. https://doi.org/10.1016/j.semnephrol.2013.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sobrin L, Ripke S, Yu Y, et al. Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology. 2012;119:1874–85. https://doi.org/10.1016/j.ophtha.2012.03.014.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raychaudhuri S, Iartchouk O, Chin K, et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet. 2011;43:1232–6. https://doi.org/10.1038/ng.976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heurich M, Martínez-Barricarte R, Francis NJ, et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci USA. 2011;108:8761–6. https://doi.org/10.1073/pnas.1019338108.

    Article  PubMed  Google Scholar 

  50. Seddon JM, Yu Y, Miller EC, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet. 2013;45:1366–70. https://doi.org/10.1038/ng.2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fritsche LG, Fariss RN, Stambolian D, et al. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet. 2014;15:151–71. https://doi.org/10.1146/annurev-genom-090413-025610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haines JL. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21. https://doi.org/10.1126/science.1110359.

    Article  CAS  PubMed  Google Scholar 

  53. Schaumberg DA. A prospective study of 2 major age-related macular degeneration susceptibility alleles and interactions with modifiable risk factors. Arch Ophthalmol. 2007;125:55. https://doi.org/10.1001/archopht.125.1.55.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134:411–31. https://doi.org/10.1016/s0002-9394(02)01624-0.

    Article  CAS  PubMed  Google Scholar 

  55. Katschke KJ, Xi H, Cox C, et al. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Sci Rep. 2018;8:7348. https://doi.org/10.1038/s41598-018-25557-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonilha VL, Bell BA, Hu J, et al. Geographic atrophy: confocal scanning laser ophthalmoscopy, histology, and inflammation in the region of expanding lesions. Investig Opthalmol Vis Sci. 2020;61:15. https://doi.org/10.1167/iovs.61.8.15.

    Article  CAS  Google Scholar 

  57. Bloch SB, Larsen M, Munch IC. Incidence of legal blindness from age-related macular degeneration in Denmark: year 2000 to 2010. Am J Ophthalmol. 2012;153:209-213.e2. https://doi.org/10.1016/j.ajo.2011.10.016.

    Article  PubMed  Google Scholar 

  58. Holekamp N, Wykoff CC, Schmitz-Valckenberg S, et al. Natural history of geographic atrophy secondary to age-related macular degeneration: results from the prospective proxima A and B clinical trials. Ophthalmology. 2020;127:769–83. https://doi.org/10.1016/j.ophtha.2019.12.009.

    Article  PubMed  Google Scholar 

  59. Heier JS, Pieramici D, Chakravarthy U, et al. Visual function decline resulting from geographic atrophy: results from the Chroma and Spectri phase 3 trials. Ophthalmol Retina. 2020;4:673–88. https://doi.org/10.1016/j.oret.2020.01.019.

    Article  PubMed  Google Scholar 

  60. Chakravarthy U, Bailey CC, Johnston RL, et al. Characterizing disease burden and progression of geographic atrophy secondary to age-related macular degeneration. Ophthalmology. 2018;125:842–9. https://doi.org/10.1016/j.ophtha.2017.11.036.

    Article  PubMed  Google Scholar 

  61. Gopinath B, Liew G, Burlutsky G, Mitchell P. Age-related macular degeneration and 5-year incidence of impaired activities of daily living. Maturitas. 2014;77:263–6. https://doi.org/10.1016/j.maturitas.2013.12.001.

    Article  PubMed  Google Scholar 

  62. Künzel SH, Möller PT, Lindner M, et al. Determinants of quality of life in geographic atrophy secondary to age-related macular degeneration. Investig Opthalmol Vis Sci. 2020;61:63. https://doi.org/10.1167/iovs.61.5.63.

    Article  Google Scholar 

  63. Patel PJ, Ziemssen F, Ng E, et al. Burden of illness in geographic atrophy: a study of vision-related quality of life and health care resource use. Clin Ophthalmol Auckl NZ. 2020;14:15–28. https://doi.org/10.2147/OPTH.S226425.

    Article  Google Scholar 

  64. Sivaprasad S, Tschosik EA, Guymer RH, et al. Living with geographic atrophy: an ethnographic study. Ophthalmol Ther. 2019;8:115–24. https://doi.org/10.1007/s40123-019-0160-3.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Geerlings MJ, de Jong EK, den Hollander AI. The complement system in age-related macular degeneration: a review of rare genetic variants and implications for personalized treatment. Mol Immunol. 2017;84:65–76. https://doi.org/10.1016/j.molimm.2016.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97. https://doi.org/10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. ANX007. In: Annex. Biosci. https://annexonbio.com/pipeline/anx007. Accessed 12 Mar 2021.

  68. Study of ANX007 in participants with primary open-angle glaucoma (2020). In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04188015 . Accessed 12 Mar 2021

  69. A study investigating the efficacy and safety of intravitreal injections of ANX007 in patients with geographic atrophy (ARCHER) (2021). In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04656561. Accessed 12 Mar 2021

  70. Stanton CM, Yates JRW, den Hollander AI, et al. Complement factor D in age-related macular degeneration. Investig Ophthalmol Vis Sci. 2011;52:8828–34. https://doi.org/10.1167/iovs.11-7933.

    Article  CAS  Google Scholar 

  71. Scholl HPN, Charbel Issa P, Walier M, et al. Systemic complement activation in age-related macular degeneration. PLoS ONE. 2008;3:e2593. https://doi.org/10.1371/journal.pone.0002593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katschke KJ, Wu P, Ganesan R, et al. Inhibiting alternative pathway complement activation by targeting the factor D exosite. J Biol Chem. 2012;287:12886–92. https://doi.org/10.1074/jbc.M112.345082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schramm EC, Clark SJ, Triebwasser MP, et al. Genetic variants in the complement system predisposing to age-related macular degeneration: a review. Mol Immunol. 2014;61:118–25. https://doi.org/10.1016/j.molimm.2014.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McHarg S, Clark SJ, Day AJ, Bishop PN. Age-related macular degeneration and the role of the complement system. Mol Immunol. 2015;67:43–50. https://doi.org/10.1016/j.molimm.2015.02.032.

    Article  CAS  PubMed  Google Scholar 

  75. Yaspan BL, Williams DF, Holz FG, et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med. 2017;9:eaaf1443. https://doi.org/10.1126/scitranslmed.aaf1443

  76. Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: Chroma and Spectri phase 3 randomized clinical trials. JAMA Ophthalmol. 2018;136:666–77. https://doi.org/10.1001/jamaophthalmol.2018.1544.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Apellis Completes Enrollment in Two Phase 3 Studies of the Targeted C3 Therapy, Pegcetacoplan, in Patients with Geographic Atrophy (GA). In: Apellis Pharm (2020). https://investors.apellis.com/news-releases/news-release-details/apellis-completes-enrollment-two-phase-3-studies-targeted-c3. Accessed 24 Nov 2020.

  78. Liao DS, Grossi FV, El Mehdi D, et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology. 2020;127:186–95. https://doi.org/10.1016/j.ophtha.2019.07.011.

    Article  PubMed  Google Scholar 

  79. Study to compare the efficacy and safety of intravitreal APL-2 therapy with sham injections in patients with geographic atrophy (GA) secondary to age-related macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03525600. Accessed 24 Nov 2020

  80. A study to compare the efficacy and safety of intravitreal APL-2 therapy with sham injections in patients with geographic atrophy (GA) secondary to age-related macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03525613. Accessed 24 Nov 2020.

  81. A monoclonal antibody to reduce disease progression in patients with geographic atrophy. In: NGMBio (2020). https://www.ngmbio.com/pipeline/ngm621/. Accessed 16 Dec 2020.

  82. Wykoff CC. Inhibition of complement C3 in geographic atrophy with NGM621: phase 1 dose-escalation study results (2020).

  83. A study of NGM621 in participants with geographic atrophy (CATALINA). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04435366; https://clinicaltrials.gov/ct2/show/NCT04465955. Accessed 24 Nov 2020.

  84. FDA approves first treatment for neuromyelitis optica spectrum disorder, a rare autoimmune disease of the central nervous system. In: US Food Drug Adm (2019). https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-neuromyelitis-optica-spectrum-disorder-rare-autoimmune-disease-central. Accessed 24 Nov 2019.

  85. Thomas TC, Rollins SA, Rother RP, et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol. 1996;33:1389–401. https://doi.org/10.1016/S0161-5890(96)00078-8.

    Article  CAS  Google Scholar 

  86. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology. 2014;121:693–701. https://doi.org/10.1016/j.ophtha.2013.09.044.

    Article  PubMed  Google Scholar 

  87. Kassa E, Ciulla TA, Hussain RM, Dugel PU. Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin Biol Ther. 2019;19:335–42. https://doi.org/10.1080/14712598.2019.1575358.

    Article  CAS  PubMed  Google Scholar 

  88. Dugel P. A phase I single ascending dose study of an intravitreal (IVT) anti-C5 monoclonal antibody (LFG316) in patients with advanced age related macular degeneration (AMD) (2014).

  89. Anti-complement C5 monotherapy ineffective in reducing geographic atrophy lesion size (2016). https://www.healio.com/news/ophthalmology/20160215/anticomplement-c5-monotherapy-ineffective-in-reducing-geographic-atrophy-lesion-size. Accessed 24 Nov 2020.

  90. Intravitreal LFG316 in patients with age-related macular degeneration (AMD) (2019). https://clinicaltrials.gov/ct2/show/results/NCT01527500. Accessed 24 Nov 2020.

  91. CLG561 proof-of-concept study as a monotherapy and in combination with LFG316 in subjects with geographic atrophy (GA) (2019). https://clinicaltrials.gov/ct2/show/NCT02515942. Accessed 24 Nov 2020.

  92. Hourcade DE. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem. 2006;281:2128–32. https://doi.org/10.1074/jbc.M508928200.

    Article  CAS  PubMed  Google Scholar 

  93. Jaffe GJ, Westby K, Csaky KG, et al. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: a randomized pivotal phase 2/3 trial. Ophthalmology. 2020. https://doi.org/10.1016/j.ophtha.2020.08.027.

    Article  PubMed  Google Scholar 

  94. A phase 3 safety and efficacy study of intravitreal administration of Zimura (Complement C5 Inhibitor). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04435366. Accessed 24 Nov 2020.

  95. Cashman SM, Ramo K, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration. PLoS ONE. 2011;6:e19078. https://doi.org/10.1371/journal.pone.0019078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. What is HMR59? https://www.hemerabiosciences.com/hmr59/ (2020). Accessed 16 Dec 2020.

  97. Treatment of advanced dry age related macular degeneration with AAVCAGsCD59. In: ClinicalTrials.gov (2019). https://clinicaltrials.gov/ct2/show/NCT03144999. Accessed 24 Nov 2020.

  98. Dugel P. Clinical trial download: data on a gene therapy for dry and wet AMD. In: Retin. Physician (2020). https://www.retinalphysician.com/issues/2020/april-2020/clinical-trial-download-data-on-a-gene-therapy-for. Accessed 24 Nov 2020.

  99. Intravitreal AAVCAGsCD59 for advanced dry age-related macular degeneration (AMD) with geographic atrophy (GA). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04358471. Accessed 24 Nov 2020

  100. Kavanagh D, Yu Y, Schramm EC, et al. Rare genetic variants in the CFI gene are associated with advanced age-related macular degeneration and commonly result in reduced serum factor I levels. Hum Mol Genet. 2015;24:3861–70. https://doi.org/10.1093/hmg/ddv091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Toomey CB, Johnson LV, Bowes Rickman C. Complement factor H in AMD: bridging genetic associations and pathobiology. Prog Retin Eye Res. 2018;62:38–57. https://doi.org/10.1016/j.preteyeres.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  102. Heesterbeek TJ, Lechanteur YTE, Lorés-Motta L, et al. Complement activation levels are related to disease stage in AMD. Investig Opthalmol Vis Sci. 2020;61:18. https://doi.org/10.1167/iovs.61.3.18.

    Article  CAS  Google Scholar 

  103. Gene Therapies. In: Gyroscope. https://www.gyroscopetx.com/gene-therapies/. Accessed 24 Nov 2020.

  104. Ellis S. GT005, a gene therapy for the treatment of dry age-related macular degeneration (AMD) (2020).

  105. FocuS: first in human study to evaluate the safety and efficacy of GT005 administered in subjects with dry AMD. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03846193?term=FOCUS&cond=Geographic+Atrophy&draw=2&rank=1. Accessed 24 Nov 2020.

  106. EXPLORE: a phase II study to evaluate the safety and efficacy of two doses of GT005 (EXPLORE). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04437368. Accessed 24 Nov 2020.

  107. HORIZON: a phase II study to evaluate the safety and efficacy of two doses of GT005. In: ClinicalTrials.gov (2021). https://clinicaltrials.gov/ct2/show/NCT04566445. Accessed 11 Mar 2021.

  108. Complement Factor H. In: Gemini Ther. https://geminitherapeutics.com/pipeline/complement-factor-h/. Accessed 24 Nov 2020.

  109. First in human study to evaluate the safety and tolerability of GEM103 in geographic atrophy secondary to dry age related macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04246866?term=GEM103&draw=2&rank=3. Accessed 27 Dec 2020.

  110. Gemini therapeutics enrolls first patient in phase 2a study of GEM103 for dry age-related macular degeneration. In: Gemini Ther (2020). https://geminitherapeutics.com/investors-and-media/news/gemini-therapeutics-enrolls-first-patient-in-phase-2a-study-of-gem103-for-dry-age-related-macular-degeneration/. Accessed 27 Dec 2020.

  111. A multiple dose study of repeat intravitreal injections of GEM103 in dry age-related macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT04643886?term=GEM103&draw=2&rank=1. Accessed 27 Dec 2020.

  112. Knickelbein JE, Chan C-C, Sen HN, et al. Inflammatory mechanisms of age-related macular degeneration. Int Ophthalmol Clin. 2015;55:63–78. https://doi.org/10.1097/IIO.0000000000000073.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pasquin S, Sharma M, Gauchat J-F. Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015;26:507–15. https://doi.org/10.1016/j.cytogfr.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  114. Emerich DF, Thanos CG. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther. 2008;10:506–15.

    CAS  PubMed  Google Scholar 

  115. Thanos CG, Bell WJ, O’Rourke P, et al. Sustained secretion of ciliary neurotrophic factor to the vitreous, using the encapsulated cell therapy-based NT-501 intraocular device. Tissue Eng. 2004;10:1617–22. https://doi.org/10.1089/ten.2004.10.1617.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang K, Hopkins JJ, Heier JS, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci. 2011;108:6241–5. https://doi.org/10.1073/pnas.1018987108.

    Article  PubMed  Google Scholar 

  117. Chew EY, Clemons TE, Jaffe GJ, et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology. 2019;126:540–9. https://doi.org/10.1016/j.ophtha.2018.09.041.

    Article  PubMed  Google Scholar 

  118. A study to determine the safety and efficacy of Renexus® in macular telangiectasia type 2. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03319849. Accessed 16 Dec 2020.

  119. A study to determine the safety and efficacy of Renexus® in macular telangiectasia type 2. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03316300. Accessed 16 Dec 2020.

  120. Di Caprio R, Lembo S, Di Costanzo L, et al. Anti-Inflammatory properties of low and high doxycycline doses: an in vitro study. Mediat Inflamm. 2015;2015:1–10. https://doi.org/10.1155/2015/329418.

    Article  CAS  Google Scholar 

  121. Stieger K, Mendes-Madeira A, Meur GL, et al. Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases. Gene Ther. 2007;14:1668–73. https://doi.org/10.1038/sj.gt.3303034.

    Article  CAS  PubMed  Google Scholar 

  122. Clinical study to evaluate treatment with ORACEA® for geographic atrophy (TOGA). In: ClinicalTrials.gov (2018). https://clinicaltrials.gov/ct2/show/NCT01782989. Accessed 24 Nov 2020.

  123. Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314:992–3. https://doi.org/10.1126/science.1133811.

    Article  CAS  PubMed  Google Scholar 

  124. Ciferri C, Lipari MT, Liang W-C, et al. The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody. Biochem J. 2015;472:169–81. https://doi.org/10.1042/BJ20150601.

    Article  CAS  PubMed  Google Scholar 

  125. Safety and tolerability study of RO7171009 in participants with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03295877. Accessed 24 Nov 2020.

  126. Kirkner R. Targeting a novel enzyme in GA. In: Retina Spec (2020). https://www.retina-specialist.com/article/targeting-a-novel-enzyme-in-ga. Accessed 24 Nov 2020.

  127. A study assessing the safety, tolerability, and efficacy of RG6147 in participants with geographic atrophy secondary to age-related macular degeneration (AMD) (GALLEGO). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03972709. Accessed 24 Nov 2020

  128. Therapeutics. In: Iveric Bio. https://ivericbio.com/therapeutics/. Accessed 27 Dec 2020.

  129. Mihai DM, Washington I. Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells. Cell Death Dis. 2014;5:e1348–e1348. https://doi.org/10.1038/cddis.2014.314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. De S, Sakmar TP. Interaction of A2E with model membranes. Implications to the pathogenesis of age-related macular degeneration. J Gen Physiol. 2002;120:147–57. https://doi.org/10.1085/jgp.20028566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ongoing Clinical Trials. In: Alkeus Pharm. http://www.alkeuspharma.com/trials.html. Accessed 24 Nov 2020.

  132. Phase 1 Safety Study of ALK-001 in Healthy Volunteers. In: ClinicalTrials.gov (2015). https://www.clinicaltrials.gov/ct2/show/NCT02230228. Accessed 24 Nov 2020.

  133. Phase 3 study of ALK-001 in geographic atrophy (SAGA). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03845582. Accessed 24 Nov 2020.

  134. Lo ACY, Woo TTY, Wong RLM, Wong D. Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2011;226(Suppl 1):10–7. https://doi.org/10.1159/000328206.

    Article  Google Scholar 

  135. Chinskey ND, Besirli CG, Zacks DN. Retinal cell death and current strategies in retinal neuroprotection. Curr Opin Ophthalmol. 2014;25:228–33. https://doi.org/10.1097/ICU.0000000000000043.

    Article  PubMed  Google Scholar 

  136. Xiao J, Yao J, Jia L, et al. Protective Effect of Met12, a small peptide inhibitor of Fas, on the retinal pigment epithelium and photoreceptor after sodium iodate injury. Investig Ophthalmol Vis Sci. 2017;58:1801–10. https://doi.org/10.1167/iovs.16-21392.

    Article  CAS  Google Scholar 

  137. A study to evaluate the safety and tolerability of ONL1204 in patients with macula-off, rhegmatogenous retinal detachment. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03780972. Accessed 24 Nov 2020.

  138. Brown EE, Lewin AS, Ash JD. Mitochondria: potential targets for protection in age-related macular degeneration. Adv Exp Med Biol. 2018;1074:11–7. https://doi.org/10.1007/978-3-319-75402-4_2.

    Article  CAS  PubMed  Google Scholar 

  139. Feher J, Kovacs I, Artico M, et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging. 2006;27:983–93. https://doi.org/10.1016/j.neurobiolaging.2005.05.012.

    Article  CAS  PubMed  Google Scholar 

  140. Bianchi E, Scarinci F, Ripandelli G, et al. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. Int J Mol Med. 2013;31:232–42. https://doi.org/10.3892/ijmm.2012.1164.

    Article  PubMed  Google Scholar 

  141. Terluk MR, Kapphahn RJ, Soukup LM, et al. Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci Off J Soc Neurosci. 2015;35:7304–11. https://doi.org/10.1523/JNEUROSCI.0190-15.2015.

    Article  CAS  Google Scholar 

  142. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019. https://doi.org/10.3390/cells8070728.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Szeto HH. Stealth peptides target cellular powerhouses to fight rare and common age-related diseases. Protein Pept Lett. 2018;25:1108–23. https://doi.org/10.2174/0929866525666181101105209.

    Article  CAS  PubMed  Google Scholar 

  144. Karaa A, Haas R, Goldstein A, et al. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology. 2018;90:e1212–21. https://doi.org/10.1212/WNL.0000000000005255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Programs and Pipelines. In: Stealth Biotherapeutics (2020). https://www.stealthbt.com/programs-pipeline/. Accessed 16 Dec 2020.

  146. Mettu P, Cousins S. The ReCLAIM Phase 1 clinical trial of elamipretide for dry AMD. In: Retin. Physician (2019). https://www.retinalphysician.com/issues/2019/november-2019/the-reclaim-phase-1-clinical-trial-of-elamipretide. Accessed 24 Nov 2020.

  147. An open-label, phase 1 clinical study to evaluate the safety and tolerability of subcutaneous elamipretide in subjects with intermediate age-related macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT02848313. Accessed 24 Nov 2020.

  148. ReCLAIM-2 study to evaluate safety, efficacy and pharmacokinetics of elamipretide in subjects with AMD with non-central GA (ReCLAIM-2). In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03891875. Accessed 24 Nov 2020.

  149. Shaw LT, Mackin A, Shah R, et al. Risuteganib—a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs. 2020;29:547–54. https://doi.org/10.1080/13543784.2020.1763953.

    Article  CAS  PubMed  Google Scholar 

  150. Zhou D. Mechanism of action of risuteganib for retinal diseases through protection of retinal pigment epithelium (RPE) and enhancement of mitochondrial functions (2020).

  151. Charters L. Risuteganib: exploring novel dry AMD treatment. In: Ophthalmol. Times (2020). https://www.ophthalmologytimes.com/view/risuteganib-exploring-novel-dry-amd-treatment. Accessed 27 Dec 2020.

  152. A clinical trial designed to evaluate the safety and exploratory efficacy of 1.0 mg Luminate® (Alg-1001) as a treatment for non-exudative macular degeneration. In: ClinicalTrials.gov (2020). https://clinicaltrials.gov/ct2/show/NCT03626636. Accessed 24 Nov 2020.

  153. Allegro ophthalmics announces positive topline results of phase 2 study evaluating risuteganib in patients with intermediate dry AMD. In: EyeWire News (2019). https://eyewire.news/articles/allegro-ophthalmics-announces-positive-topline-results-of-phase-2-study-evaluating-risuteganib-in-patients-with-intermediate-dry-amd/. Accessed 16 Dec 2020.

  154. Cantor LB. Brimonidine in the treatment of glaucoma and ocular hypertension. Ther Clin Risk Manag. 2006;2:337–46. https://doi.org/10.2147/tcrm.2006.2.4.337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Galanopoulos A, Goldberg I. Clinical efficacy and neuroprotective effects of brimonidine in the management of glaucoma and ocular hypertension. Clin Ophthalmol Auckl NZ. 2009;3:117–22.

    CAS  Google Scholar 

  156. Kuppermann BD, Patel SS, Boyer DS, et al. Phase 2 study of the safety and efficacy of brimonidine drug delivery system (BRIMO DDS) generation 1 in patients with geographic atrophy secondary to age-related macular degeneration. Retina. 2020. https://doi.org/10.1097/IAE.0000000000002789.

    Article  Google Scholar 

  157. A safety and efficacy study of brimonidine intravitreal implant in geographic atrophy secondary to age-related macular degeneration (BEACON). In: ClinicalTrials.gov (2019). https://clinicaltrials.gov/ct2/show/NCT02087085. Accessed 24 Nov 2020.

  158. Freeman W. Brimonidine DDS safety and efficacy in patients with geographic atrophy secondary to age-related macular degeneration (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Wykoff.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Hannah Yu has no conflicts of interest that are directly relevant to the content of this article. Charles C. Wykoff has provided consulting services to Allergan, Apellis, Genentech, Gyroscope, IVERIC Bio, Merck, NGM Biopharmaceuticals, Novartis, OccuRx, ONL Therapeutics, and Roche and has received research support from Apellis, Gemini Therapeutics, Genentech, Gyroscope, IONIS Pharmaceutical, IVERIC Bio, LMRI, Neurotech Pharmaceuticals, NGM Biopharmaceuticals, and Novartis.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Charles C. Wykoff was responsible for the study conceptualization. Hannah J. Yu was responsible for the literature search and data analysis and writing and preparing the original draft. Hannah J. Yu and Charles C. Wykoff reviewed and edited the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.J., Wykoff, C.C. Investigational Agents in Development for the Treatment of Geographic Atrophy Secondary to Age-Related Macular Degeneration. BioDrugs 35, 303–323 (2021). https://doi.org/10.1007/s40259-021-00481-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-021-00481-y

Navigation