Skip to main content
Log in

Velocity and Temperature of In-Flight Particles and Its Significance in Determining the Microstructure and Mechanical Properties of TBCs

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The correlation between particle in-flight parameter, defect content and mechanical property of yttria-stabilized zirconia coating was systematically studied in the present work. The melting state of in-flight particle during spraying was simulated using computational fluid dynamics. The results suggested that, with the increase of velocity and temperature of in-flight particles in the plasma jet, the particles changed from partially melted state to fully melted one. As a result, the total defect content of as-sprayed coating gradually decreased, while elastic modulus and microhardness increased correspondingly. However, the fracture toughness of as-sprayed coating reached a maximum value when the total defect content reached approximately 9.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.C. Williams, E.A. Starke, Acta Mater. 5775, 51 (2003)

    Google Scholar 

  2. N.P. Padture, M. Gell, E.H. Jordan, Science 280, 296 (2002)

    Google Scholar 

  3. R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram. Soc. 2023, 83 (2010)

    Google Scholar 

  4. J. Zhang, X.Y. Guo, Y.G. Jung, L. Li, J. Knapp, Surf. Coat. Technol. 18, 323 (2017)

    Google Scholar 

  5. W.B. Li, L.L. Liu, Y.F. Yang, S.L. Zhu, F.H. Wang, Acta Metall. Sin. (Engl. Lett.) (2018). https://doi.org/10.1007/s40195-018-0842-1(0123456789

    Google Scholar 

  6. C.S. Che, J.L. Lu, G. Kong, Q.Y. Xu, Acta Metall. Sin. (Engl. Lett.) 138, 22 (2009)

    Google Scholar 

  7. S.M.A. Shibli, K.S. Chinchu, M.A. Sha, Acta Metall. Sin. (Engl. Lett.) (2018). https://doi.org/10.1007/s40195-018-0823-4

    Google Scholar 

  8. S.H. Wang, C.S. Liu, F.J. Shan, Acta Metall. Sin. (Engl. Lett.) 161, 22 (2009)

    Google Scholar 

  9. A. Vardelle, M. Vardelle, P. Fauchais, Plasma Chem. Plasma P. 255, 2 (1982)

    Google Scholar 

  10. D.Q. Zhang, L.L. Zheng, X.Y. Hu, H. Zhang, Int. J. Heat Mass Transf. 508, 98 (2016)

    Google Scholar 

  11. H.B. Xiong, L.L. Zheng, S. Sampath, R.L. Williamson, J.R. Fincke, Int. J. Heat Mass Transf. 5189, 47 (2004)

    Google Scholar 

  12. P. Wei, Z.Y. Wei, G.X. Zhao, J. Du, Y. Bai, Comput. Mater. Sci. 8, 103 (2015)

    Google Scholar 

  13. Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, J.F. Yang, Appl. Surf. Sci. 7210, 257 (2011)

    Google Scholar 

  14. P. Fauchais, J. Phys. D Appl. Phys. 86, 37 (2004)

    Google Scholar 

  15. T. Nakamura, G. Qian, C.C. Berndt, J. Am. Ceram. Soc. 578, 83 (2000)

    Google Scholar 

  16. S. Deshpande, A. Kulkarni, S. Sampath, H. Herman, Surf. Coat. Technol. 6, 187 (2004)

    Google Scholar 

  17. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, S. Sampath, Mater. Sci. Eng. A. 239, 497 (2008)

    Google Scholar 

  18. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, H. Herman, Acta Mater. 5319, 51 (2003)

    Google Scholar 

  19. T. Yang, J.P. Longtin, S. Sampath, J. Am. Ceram. Soc. 710, 92 (2009)

    Google Scholar 

  20. C.K. Lin, C.C. Berndt, J. Mater. Sci. 111, 30 (1995)

    Google Scholar 

  21. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, Ceram. Int. 2295, 35 (2009)

    Google Scholar 

  22. H. Zhou, F. Li, B. He, Surf. Coat. Technol. 7360, 201 (2007)

    Google Scholar 

  23. S.W. Kweh, K.A. Khor, P. Cheang, Biomaterials 1223, 21 (2000)

    Google Scholar 

  24. K.A. Khor, Y.W. Gu, C.H. Quek, P. Cheang, Surf. Coat. Technol. 195, 168 (2003)

    Google Scholar 

  25. N.H. Faisal, R. Ahmed, A.K. Prathuru, S. Spence, M. Hossain, J.A. Steel, Eng. Fract. Mech. 189, 128 (2014)

    Google Scholar 

  26. R.S. Lima, A. Kucuk, C.C. Berndt, Mater. Sci. Eng. A 224, 327 (2002)

    Google Scholar 

  27. X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu, Appl. Surf. Sci. 3879, 254 (2008)

    Google Scholar 

  28. H.J. Kim, Y.G. Kweon, Thin Solid Films 201, 342 (1999)

    Google Scholar 

  29. Z.Y. Yu, Z.Q. Tan, G.L. Fan, R.B. Lin, D.B. Xiong, Q. Guo, Y.S. Su, Z.Q. Li, D. Zhang, Acta Metall. Sin. (Engl. Lett.) 1121, 31 (2018)

    Google Scholar 

  30. J. Wang, J. Mater. Sci. 801, 19 (1984)

    Google Scholar 

  31. Y. Wang, Y. Bai, T. Yuan, H.Y. Chen, Y.X. Kang, W.J. Shi, X.L. Song, B.Q. Li, Surf. Coat. Technol. 95, 319 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Collaborative Innovation Center of Advanced Control Valve Project (Grant No. WZYB-XTCX-001). The authors would like to thank Mr. Zijun Ren at Instrument Analysis Center of Xi’an Jiaotong University for the assistance with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Bai or Yu-Shan Ma.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., He, T., Bai, Y. et al. Velocity and Temperature of In-Flight Particles and Its Significance in Determining the Microstructure and Mechanical Properties of TBCs. Acta Metall. Sin. (Engl. Lett.) 32, 1269–1280 (2019). https://doi.org/10.1007/s40195-019-00886-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00886-3

Keywords

Navigation