Skip to main content
Log in

Carbonated waste valorisation from a peat bog exploitation in the treatment of arsenic-polluted waters

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine the capacity of peat and carbonated waste obtained from peat extraction to remove arsenic from highly polluted waters. This research examined the arsenic adsorption of both materials (peat and carbonated waste) and different mixtures made from both materials exposed to arsenic-polluted waters at concentrations of 0, 50, 100, and 200 μg As l−1. The potential toxicity of the treated waters, materials, and mixtures was also assessed by toxicity bioassays using Lactuca sativa L. and heterotrophic respiration. In all cases, a significant reduction in arsenic concentration in the treated waters occurred; however, the mixture richest in peat (90%) and the carbonated waste were the most effective, while single peat was the only one that did not reduce arsenic concentration below the guideline value for drinking water (10 µg As l−1) set by the World Health Organization. The adsorption capacity of the materials and mixtures is strongly conditioned by their properties, especially pH and calcium carbonate content. The mixture richest in peat had a much higher arsenic adsorption capacity than single peat. Generally, high potential toxicity was detected in single peat, while carbonated waste and the mixtures showed better responses. Nevertheless, this toxicity may be due to the toxic effect of polyphenolic compounds in peat instead of the arsenic content. Results reveal that carbonated waste is the most recommended material for the decontamination of arsenic-polluted waters, while mixtures enhance arsenic adsorption and decrease phytotoxic effects, promoting the potential fertility of the carbonated waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Garrido A, Romero-Freire A, García-Carmona M, Martín Peinado FJ, Sierra Aragón M, Martínez Garzón FJ (2020) Arsenic fixation in polluted soils by peat applications. Minerals 10:968. https://doi.org/10.3390/min10110968

    Article  CAS  Google Scholar 

  • Andrades M, Martinez ME (2014) Material didáctico Agricultura y Alimentación: Fertilidad del suelo y parámetros que la definen (3a edición). Universidad de la Rioja, Logroño, España

    Google Scholar 

  • Ansone-Bertina L, Klavins M (2016) Sorption of v and VI group metalloids (As, Sb, Te) on modified peat sorbents. Open Chem 14:46–59. https://doi.org/10.1515/chem-2016-0003

    Article  CAS  Google Scholar 

  • Ayala J, Fernández B (2020) Industrial waste materials as adsorbents for the removal of As and other toxic elements from an abandoned mine spoil heap leachate: a case study in Asturias. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121446

    Article  Google Scholar 

  • Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289. https://doi.org/10.1007/s11368-010-0285-4

    Article  CAS  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158. https://doi.org/10.1007/s11356-017-8462-2

    Article  CAS  Google Scholar 

  • Barahona E (1984) Determinaciones analíticas en suelos: carbonatos totales y caliza activa. In: Sociedad Española de la Ciencia del Suelo (SECS) (ed) I Congreso Nacional de la Ciencia del Suelo. Sociedad Española de la Ciencia del Suelo, Madrid, Spain

  • Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40:447–485. https://doi.org/10.1007/s11164-012-1000-4

    Article  CAS  Google Scholar 

  • Battista F, Fino D, Ruggeri B (2014) Polyphenols concentration’s effect on the biogas production by wastes derived from olive oil production. Chem Eng Trans 38:373–378. https://doi.org/10.3303/CET1438063

    Article  Google Scholar 

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190. https://doi.org/10.1016/j.scitotenv.2005.01.027

    Article  CAS  Google Scholar 

  • Beni C, Diana G, Marconi S (2008) Bovine milk chain in Italian farms. I. Arsenic levels in soil, gravitational and clean water, bovine diet, and milk. Agrochimica 52:99–115

    CAS  Google Scholar 

  • BOE. Boletín Oficial del Estado-Gobierno de España (2015) Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. BOE 219:80582–80667

    Google Scholar 

  • Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811. https://doi.org/10.1021/es980998m

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654. https://doi.org/10.1016/j.envint.2008.10.004

    Article  CAS  Google Scholar 

  • Castejon-Peñas J, Kobierski M, Fernández G (2018) Estimation of inhalation bioaccessible fraction of As, Cd, Zn and Pb from settable dust samples from mediterranean mine towns under arid-semiarid climate. In: Lalanne M, Becerra S (eds) Contaminations, the environment, health and society: From risk assessment to public action International and Interdisciplinary conference. EuroScience Open Forum, Toulouse, France

  • Chen CJ, Tsung-Li K, Meei-Maan W (1988) Arsenic and cancers. Lancet 331:414–415. https://doi.org/10.1016/S0140-6736(88)91207-X

    Article  Google Scholar 

  • Chen G, Wang X, Wang R, Liu G (2019) Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: an example from the Huainan coal mining area, China. Ecotoxicol Environ Saf 171:737–745. https://doi.org/10.1016/j.ecoenv.2018.12.101

    Article  CAS  Google Scholar 

  • Cloy JM, Farmer JG, Graham MC, Mackenzie AB (2009) Retention of As and Sb in ombrotrophic peat bogs: Records of As, Sb, and Pb deposition at four Scottish sites. Environ Sci Technol 43:1756–1762. https://doi.org/10.1021/es802573e

    Article  CAS  Google Scholar 

  • Cutillo F, D’Abrosca B, DellaGreca M, Fiorentino A, Zarrelli A (2003) Lignans and neolignans from Brassica fruticulosa: effects on seed germination and plant growth. J Agric Food Chem 51:6165–6172. https://doi.org/10.1021/jf034644c

    Article  CAS  Google Scholar 

  • Dobran S, Zagury GJ (2006) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364:239–250. https://doi.org/10.1016/j.scitotenv.2005.06.006

    Article  CAS  Google Scholar 

  • Durán RM, Padilla RB, Martín AM, de Ursinos JAFR, Mendoza A (1991) Biodegradación de los compuestos fenólícos presentes en el alpechín. Grasas Aceites 42:271–276

    Article  Google Scholar 

  • US EPA. (1996) Ecological effects test guidelines. Seed germination/root elongation toxicity test. OPPTS 850.4200. United States Environmental Protection Agency, Washington DC, USA

  • US EPA (2011) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). EPA-540-R-070–002. United States Environmental Protection Agency, Washington DC, USA.

  • García-Carmona M, Romero-Freire A, Sierra Aragón M, Martínez Garzón FJ, Martín Peinado FJ (2017) Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. J Environ Manage 191:228–236. https://doi.org/10.1016/j.jenvman.2016.12.041

    Article  CAS  Google Scholar 

  • Ghosh A, Sáez AE, Ela W (2006) Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Sci Total Environ 363:46–59. https://doi.org/10.1016/j.scitotenv.2005.06.018

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil-arsenic. Soil Sci Soc Am J 52:1297–1300. https://doi.org/10.2136/sssaj1988.03615995005200050015x

    Article  CAS  Google Scholar 

  • González ZI, Krachler M, Cheburkin AK, Shotyk W (2006) Spatial distribution of natural enrichments of arsenic, selenium and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Environ Sci Technol 40:6568–6574. https://doi.org/10.1021/es061080v

    Article  CAS  Google Scholar 

  • ISO 17155 (2002) Soil quality. Determination abundance activity soil microflora using respiration curves. International Standard ISO No.17155. International Organization for Standardization, Geneva, Switzerland

  • Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–353. https://doi.org/10.1111/j.1462-2920.2007.01455.x

    Article  CAS  Google Scholar 

  • Jain A, Loeppert RH (2000) Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J Environ Qual 29:1422–1430. https://doi.org/10.2134/jeq2000.00472425002900050008x

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soil and plants, 4th edn. CRC Press (Taylor & Francis Group), Boca Raton, Florida, USA

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human, 1st edn. Springer Science & Business Media, Berlin, Germany

  • Klitzke S, Lang F (2009) Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil–effects of pH increase and counterion valency. J Environ Qual 38:933–939. https://doi.org/10.2134/jeq2008.0239

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8:44–50. https://doi.org/10.9790/2402-08714450

    Article  Google Scholar 

  • Lèbre É, Corder G, Golev A (2017) The role of the mining industry in a circular economy: a framework for resource management at the mine site level. J Ind Ecol 21:662–672. https://doi.org/10.1111/jiec.12596

    Article  Google Scholar 

  • Li HH, Inoue M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787. https://doi.org/10.1007/BF00982307

    Article  CAS  Google Scholar 

  • Li G, Sun G-X, Williams PN, Nunes L, Zhu Y-G (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37:1219–1225. https://doi.org/10.1016/J.ENVINT.2011.05.007

    Article  CAS  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15. https://doi.org/10.1016/j.envint.2014.12.010

    Article  CAS  Google Scholar 

  • Martín FJP, Romero-Freire A, Arco-Lázaro E, Sierra M, Ortiz-Bernad I, Abbaslou H (2012) Assessment of arsenic toxicity in spiked soils and water solutions by the use of bioassays. Spanish J Soil Sci 2:45–56. https://doi.org/10.3232/SJSS.2012.V2.N3.05

    Article  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34:1255–1261. https://doi.org/10.1016/S0043-1354(99)00272-9

    Article  CAS  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols–sources and toxicity. Polish J Environ Stud 16:347–362

    Google Scholar 

  • Mladenov N, Zheng Y, Miller MP, Nemergut DR, Legg T, Simone B, Hageman C, Rahman MM, Ahmed KM, Mcknight DM (2010) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Technol 44:123–128. https://doi.org/10.1021/es901472g

    Article  CAS  Google Scholar 

  • Molin M, Ulven SM, Meltzer HM, Alexander J (2015) Arsenic in the human food chain, biotransformation and toxicology—review focusing on seafood arsenic. J Trace Elem Med Biol 31:249–259. https://doi.org/10.1016/j.jtemb.2015.01.010

    Article  CAS  Google Scholar 

  • Moon DH, Dermatas D, Menounou N (2004) Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci Total Environ 330:171–185. https://doi.org/10.1016/j.scitotenv.2004.03.016

    Article  CAS  Google Scholar 

  • Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manage 88:437–447. https://doi.org/10.1016/j.jenvman.2007.03.008

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. https://doi.org/10.1046/j.1365-2389.2003.00556.x

    Article  Google Scholar 

  • Niemeyer JC, Lolata GB, de Carvalho GM, Da Silva EM, Sousa JP, Nogueira MA (2012) Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl Soil Ecol 59:96–105. https://doi.org/10.1016/j.apsoil.2012.03.019

    Article  Google Scholar 

  • Nighojkar AK, Vijay A, Kumavat A, Gupta S, Satankar RK, Plappally A (2019) Use of marble and iron waste additives for enhancing arsenic and E. coli contaminant removal capacity and strength of porous clay ceramic materials for point of use drinking water treatment. Desalin Water Treat 157:290–302. https://doi.org/10.5004/dwt.2019.23553

    Article  CAS  Google Scholar 

  • Nishiwaki H, Kumamoto M, Shuto Y, Yamauchi S (2011) Stereoselective syntheses of all stereoisomers of lariciresinol and their plant growth inhibitory activities. J Agric Food Chem 59:13089–13095. https://doi.org/10.1021/jf203222w

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace Metals and other Contaminants in the Environment. Elsevier Inc., Amsterdam, Netherlands, pp 3–60

    Google Scholar 

  • O’Neill P (1995) Arsenic. In: Alloway BJ (ed) Heavy metals in soils. Springer, New York

    Google Scholar 

  • OECD (2003) Guideline for the testing of chemicals. Proposal for updating Guideline 208. Terrestrial plant test: 208: Seedling emergence and seedling growth test. Organization for Economic Cooperation and Development, Paris, France

  • Olsen SR, Sommers LE (1982) Determination of available phosphorus. In: Page AL et al. (ed) Method of Soil Analysis. Part 2, second ed. ASA and ASSA. Agronomy, Madison, WI, USA, pp 403–430

  • Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza MG, Tamay-Cach F, Valenzuela-Limón OL, García-Montalvo EA, Hernández-Zavala A (2020) Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2019.104539

    Article  Google Scholar 

  • Palmer K, Ronkanen AK, Kløve B (2015) Efficient removal of arsenic, antimony and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecol Eng 75:350–364. https://doi.org/10.1016/j.ecoleng.2014.11.045

    Article  Google Scholar 

  • Petänen T, Lyytikäinen M, Lappalainen J, Romantschuk M, Kukkonen JVK (2003) Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods. Environ Pollut 122:407–415. https://doi.org/10.1016/S0269-7491(02)00307-X

    Article  Google Scholar 

  • Podgorski J, Berg M (2020) Global threat of arsenic in groundwater. Science. https://doi.org/10.1126/science.aba1510

    Article  Google Scholar 

  • Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M (2015) Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123:412–421. https://doi.org/10.1289/ehp.1307894

    Article  Google Scholar 

  • Rahman A, Vahter M, Ekström E-CC, Rahman M, Golam Mustafa AHM, Wahed MA, Yunus M, Persson LÅ (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165:1389–1396. https://doi.org/10.1093/aje/kwm025

    Article  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896. https://doi.org/10.1021/es0112801

    Article  CAS  Google Scholar 

  • Roberts D, Nachtegaal M, Sparks DL (2005) Speciation of metals in soils. In: Tabatabai MA, Sparks DL (eds) Chemical processes in soils. Soil Science Society of America, Washington DC, USA, pp 619–654

    Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290. https://doi.org/10.1038/ismej.2007.53

    Article  CAS  Google Scholar 

  • Romero FM, Armienta MA, Carrillo-Chavez A (2004) Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán. México Arch Environ Contam Toxicol 47:1–13

    CAS  Google Scholar 

  • Romero-Freire A, Sierra-Aragón M, Ortiz-Bernad I, Martín-Peinado FJ (2014) Toxicity of arsenic in relation to soil properties: implications to regulatory purposes. J Soils Sediments 14:968–979. https://doi.org/10.1007/s11368-014-0845-0

    Article  CAS  Google Scholar 

  • Rousk J, Demoling LA, Bahr A, Bååth E (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol 63:350–358. https://doi.org/10.1111/j.1574-6941.2008.00440.x

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  Google Scholar 

  • Sánchez DB, Peñas JMC, García GF (2017) The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain). Atmos Environ 152:256–269. https://doi.org/10.1016/j.atmosenv.2016.12.043

    Article  CAS  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particles size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224. https://doi.org/10.1128/AEM.67.9.4215

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol Environ Saf 112:247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009

    Article  CAS  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103. https://doi.org/10.1590/S0042-96862000000900005

    Article  CAS  Google Scholar 

  • Soil Conservation Service (1972) Methods and procedures for collecting soil samples. Soil Survey, USDA, Washington, DC, USA

  • Stahel WR (2016) The circular economy. Nature 531:435–438. https://doi.org/10.1038/531435a

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental Biochemistry of Arsenic. In: Reviews of environmental contamination and toxicology. Springer Science & Business Media, New York, United States, pp 79–110

  • Tayebi-Khorami M, Edraki M, Corder G, Golev A (2019) Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 9:286–299. https://doi.org/10.3390/min9050286

    Article  Google Scholar 

  • Theodorsson-Norheim E (1986) Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Comput Methods Programs Biomed 23:57–62. https://doi.org/10.1016/0169-2607(86)90081-7

    Article  CAS  Google Scholar 

  • Torres MTR (2003) Empleo de los ensayos con plantas en el control de contaminantes tóxicos ambientales. Rev Cubana Hig Epidemiol 41:2–3

    Google Scholar 

  • Tyurin IV (1951) Analytical procedure for a comparative study of soil humus. Tr Poch Inst Dokuchaev 33:5–21

    Google Scholar 

  • Wei H, Xiao G, Guenet B, Janssens IA, Shen W (2015) Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests. Sci Rep 5:1–6. https://doi.org/10.1038/srep07854

    Article  CAS  Google Scholar 

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in ground water of the western United States. Groundwater 26:333–347

    Article  CAS  Google Scholar 

  • WHO (2017) Guidelines for Drinking-water quality, 4th edn. World Health Organization (WHO), Geneva, Switzerland

  • Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A (2011) Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. J Hazard Mater 189:564–571. https://doi.org/10.1016/j.jhazmat.2011.02.071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project RTI 2018-094327-B-I00 and Grant FPU-18/02901 (Spanish Ministry of Science, Innovation and Universities).

Author information

Authors and Affiliations

Authors

Contributions

AAG: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing–Original Draft, Review & Editing, Visualization. MGC: Investigation, Resources, Data Curation, Supervision. MSA Conceptualization, Writing–Review & Editing, Visualization, Supervision, Funding acquisition. FJMP: Conceptualization, Formal analysis, Methodology, Writing – Review & Editing, Supervision, Funding acquisition. FJMG: Conceptualization, Methodology, Validation, Formal analysis, Resources, Supervision, Project administration.

Corresponding author

Correspondence to A. Aguilar-Garrido.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Informed consent

The authors consent to publish this scientific work carried out by them to this journal. The authors have consented to participate in the research work carried and publish the technical outcome of the same.

Additional information

Editorial responsibility: Samareh Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Garrido, A., García-Carmona, M., Sierra-Aragón, M. et al. Carbonated waste valorisation from a peat bog exploitation in the treatment of arsenic-polluted waters. Int. J. Environ. Sci. Technol. 19, 3457–3468 (2022). https://doi.org/10.1007/s13762-021-03445-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03445-5

Keywords

Navigation