Skip to main content

Advertisement

Log in

Handling swarm of UAVs based on evolutionary multi-objective optimization

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

The fast technological improvements in unmanned aerial vehicles (UAVs) has created new scenarios where a swarm of UAVs could operate in a distributed way. This swarm of vehicles needs to be controlled from a set of ground control stations, and new reliable mission planning systems, which should be able to handle the large amount of variables and constraints. This paper presents a new approach where this complex problem has been modelled as a constraint satisfaction problem (CSP), and is solved using a multi-objective genetic algorithm (MOGA). The algorithm has been designed to minimize several variables of the mission, such as the fuel consumption or the makespan among others. The designed fitness function, used by the algorithm, takes into consideration, as a weighted penalty function, the number of constraints fulfilled for each solution. Therefore, the MOGA algorithm is able to manage the number of constraints fulfilled by the selected plan, so it is possible to maximize in the elitism phase of the MOGA the quality of the solutions found. This approach allows to alleviate the computational effort carried out by the CSP solver, finding new solutions from the Pareto front, and therefore reducing the execution time to obtain a solution. In order to test the performance of this new approach 16 different mission scenarios have been designed. The experimental results show that the approach outperforms the convergence of the algorithm in terms of number of generations and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://geographiclib.sourceforge.net/.

  2. http://www.gdal.org/.

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Barták, R., Salido, M.A.: Constraint satisfaction for planning and scheduling problems. Constraints 16(3), 223–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bethke, B., Valenti, M., How, J.P.: UAV task assignment. IEEE Robot. Autom. Mag. 15, 39–44 (2008)

    Article  Google Scholar 

  4. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R., Teichteil-Königsbuch, F.: Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to out-of-sight flights. Aerosp. Sci. Technol. 11(2–3), 183–193 (2007)

    Article  Google Scholar 

  7. Guerriero, F., Surace, R., Loscri, V., Natalizio, E.: A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints. Appl. Math. Model. 38(3), 839–852 (2014)

    Article  MathSciNet  Google Scholar 

  8. Hao, X., Liu, J.: A multiagent evolutionary algorithm with direct and indirect combined representation for constraint satisfaction problems. Soft. Comput. 21(3), 781–793 (2017)

    Article  Google Scholar 

  9. Kvarnström, J., Doherty, P.: Automated planning for collaborative UAV systems. In: 11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010, December, pp. 1078–1085 (2010)

  10. Leary, S., Deittert, M., Bookless, J.: Constrained UAV mission planning: a comparison of approaches. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2002–2009. IEEE (2011)

  11. Mittal, S., Deb, K.: Three-Dimentional Offline Path Planning for UAVs Using Multiobjective Evolutionary Algorithms. In: 2007 IEEE Congress on Evolutionary Computation (CEC’2007), pp. 3195–3202. IEEE (2007)

  12. Pascarella, D., Venticinque, S., Aversa, R., Mattei, M., Blasi, L.: Parallel and distributed computing for UAVs trajectory planning. J. Ambient. Intell. Humaniz. Comput. 6(6), 773–782 (2015)

    Article  Google Scholar 

  13. Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J.A., de la Cruz, J.M.: A real World multi-UAV evolutionary planner for minimum time target detection. In: 2016 on Genetic and Evolutionary Computation Conference—GECCO ’16, pp. 981–988. ACM (2016)

  14. Pohl, A.J., Lamont, G.B.: Multi-Objective UAV Mission Planning Using Evolutionary Computation. In: Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) 2008 Winter Simulation Conference, Pohl, pp. 1268–1279. IEEE (2008)

  15. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: A hybrid MOGA-CSP for multi-UAV mission planning. In: Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1205–1208. ACM (2015)

  16. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Performance Evaluation of Multi-UAV Cooperative Mission Planning Models. In: Núñez, D.C.M., Nguyen, N., Trawiński, B. (eds.) Computational Collective Intelligence. Lecture Notes in Computer Science, vol. 9330, pp. 203–212. Springer, Cham (2015)

  17. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: A weighted penalty fitness for a hybrid MOGA-CSP to solve mission planning problems. In: XI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB 2016), pp. 305–314 (2016)

  18. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms. Soft Computing pp. 1–18 (2016)

  19. Rodríguez-Fernández, V., Menéndez, H.D., Camacho, D.: Automatic profile generation for UAV operators using a simulation-based training environment. Prog. Artif. Intell. 5(1), 37–46 (2016)

    Article  Google Scholar 

  20. Rosenberg, B., Richards, M., Langton, J.T., Tenenbaum, S., Stouch, D.W.: Applications of multi-objective evolutionary algorithms to air operations mission planning. In: 10th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO 2008), pp. 1879–1886. ACM, Atlanta, GA, USA (2008)

  21. Ruiz, J.J., Martinez-De-Dios, J.R., Cobano, J.A., Ollero, A.: A multi-payload simulator for cooperative UAS missions. 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016 pp. 1192–1199 (2016)

  22. Shang, K., Karungaru, S., Feng, Z., Ke, L., Terada, K.: A GA-ACO hybrid algorithm for the multi-UAV mission planning problem. In: 14th International Symposium on Communications and Information Technologies, ISCIT 2014, pp. 243–248. IEEE (2014)

  23. Stouch, D.W., Zeidman, E., Richards, M., McGraw, K.D., Callahan, W.: Coevolving Collection Plans for UAS Constellations. In: 13th Annual Genetic and Evolutionary Computation Conference (GECCO’11), pp. 1691–1698 (2011)

  24. Wang, Z., Liu, Q., Tao, H., Li, J.: Multiple task planning based on TS algorithm for multiple heterogeneous unmanned aerial vehicles. In: 2014 IEEE Chinese Guidance, Navigation and Control Conference, CGNCC 2014, pp. 630–635. IEEE (2014)

  25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Weighted optimization framework for large-scale multi-objective optimization. In: Genetic and Evolutionary Computation—GECCO, pp. 83–84. ACM, Denver, Colorado, USA (2016)

  27. Zitzler, E., Brockhoff, D., Thiele, L.: The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol. 4403, pp. 862–876. Springer, Berlin (2007)

  28. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K.C., Tsahalis, D.T., Periaux, J., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)

Download references

Acknowledgements

This work has been supported by the next research projects: Airbus Defence and Space (FUAM-076914 and FUAM-076915), UAH 2016/00351/001, EphemeCH (TIN2014-56494-C4-4-P) Spanish Ministry of Economy and Competitivity, CIBERDINE S2013/ICE-3095, both under the European Regional Development Fund FEDER, and RiskTrack project co-funded by the European Union’s Justice Program (2014–2020). The authors would like to acknowledge the support obtained from Airbus Defence and Space, specially from Savier Open Innovation project members: José Insenser, Gemma Blasco and César Castro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Ramirez-Atencia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Atencia, C., R-Moreno, M.D. & Camacho, D. Handling swarm of UAVs based on evolutionary multi-objective optimization. Prog Artif Intell 6, 263–274 (2017). https://doi.org/10.1007/s13748-017-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-017-0123-7

Keywords

Navigation