Skip to main content
Log in

Physical and thermomechanical characterization of the novel aluminum silicon carbide-reinforced polymer nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In the present work, the aluminum silicon carbide nanoparticle (Al–SiC NP)-reinforced polymer composites were fabricated via ultrasonic assisted wet layup method to improve the physical, mechanical, and thermal properties of the epoxy polymer. The experimental design was selected based on the response surface methodology (central composites design) to optimize the effect of both Al–SiC NP concentration (2.93–17.07 wt%) and sonication time (47.57–132.43 min). From the analysis of variance (ANOVA) results, it was found that the Al–SiC NP concentration and sonication time played significant roles on the mechanical properties. To simultaneously maximize the flexural strength, the optimal values of Al–SiC NP concentration and sonication time were found to be 10 wt% and 120 min, respectively. From the normal distribution curve, it was found that there is a good agreement between experimental results and developed central composite design (CCD) model. Addition of Al–SiC NPs under optimum condition (10 wt%) enhanced the overall tensile, compression and flexural properties by 1.98, 1.08, and 2.22 times, respectively than those of the neat polymer. Under optimum condition, the glass transition temperature and thermal stability of Al–SiC/epoxy nanocomposites were found to be higher than those of the pristine epoxy composite. Microstructural analysis also confirmed the uniform dispersion and stronger interfacial bonds within the epoxy matrix, which improved physical and thermomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  2. Gkikas G, Barkoula N-M, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B Eng 43:2697–2705

    Article  CAS  Google Scholar 

  3. Carbaleira P, Haupert F (2010) Toughening effects of titanium dioxide nanoparticles on TiO2/epoxy resin nanocomposites. Polym Compos 31:1241–1246

    Google Scholar 

  4. Ghosh PK, Pathak A, Goyat MS, Halder S (2012) Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite. J Reinf Plast Compos 17:1180–1188

    Article  CAS  Google Scholar 

  5. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  6. Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8:173. https://doi.org/10.3390/polym8050173

    Article  CAS  PubMed Central  Google Scholar 

  7. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. AdvEng Mater 12:1177–1190

    CAS  Google Scholar 

  8. Pramanik S, Das P (2019) In : Karak N (ed) Nanomaterials and polymer nanocomposites raw materials to applications. Elsevier, Netherlands

  9. Lin B, Gelevs GA, Haber JA, Sundararaj U (2007) Electrical, rheological, and mechanical properties of polystyrene/copper nano wire nanocomposites. Ind Eng Chem Res 46:2481–2487

    Article  CAS  Google Scholar 

  10. Bae Y-H, Yu M-J, Vu MC, Choi WK, Kim S-R (2018) Synergistic effects of segregated network by polymethlmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Compos Sci Technol 155:144–150

    Article  CAS  Google Scholar 

  11. Singh SK, Singh S, Kumar A, Jain A (2017) Thermo-mechanical behavior of TiO2 dispersed epoxy composites. Eng Fract Mech 184:241–248

    Article  Google Scholar 

  12. Xiao C, Tan Y, Yang X, Xu T, Wang L, Qi Z (2018) Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes. Chem Phys Lett 695:34–43

    Article  CAS  Google Scholar 

  13. Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N (2014) Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Mater Des 59:383–396

    Article  CAS  Google Scholar 

  14. Cao G, Choi H, Oportus J, Konishi H, Li X (2008) Study on tensile properties and microstructure of cast AZ91D/AlN composites. Mater Sci Eng A 494:127–131

    Article  CAS  Google Scholar 

  15. Choi SM, Awaji M (2005) Nanocomposites—a new material design concept. Sci Technol Adv Mater 6:2–10

    Article  CAS  Google Scholar 

  16. Aravind R, Saravanan M, Baradeswaran A, Vettivel SC, Suresh S (2016) Tribological and surface behavior of AA 6061/Al2O3/nano graphite hybrid composite using stir casting. J Bal Tribol Assoc 22:2218–2226

    Google Scholar 

  17. Sajjadi SA, Ezatpour HR, Beygi H (2011) Microstructure and mechanical properties of Al-Al2O3 micro and nanocomposites fabricated by stir casting. Mater Sci Eng A 528:8765–8771

    Article  CAS  Google Scholar 

  18. Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD (2014) Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des 57:638–645

    Article  CAS  Google Scholar 

  19. Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928

    Article  CAS  Google Scholar 

  20. Manigandan K, Srivatsan TS, Quick T (2012) Influence of silicon carbide particulates on tensile fracture behavior of an aluminum alloy. Mater Sci Eng A 534:711–715

    Article  CAS  Google Scholar 

  21. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  22. Carreño-Gallardo C, Estrada-Guel I, López-Meléndez C, Martínez-Sánchez R (2014) Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J Alloys Comp 586:S68–S72

    Article  CAS  Google Scholar 

  23. Ghasemi FA, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym Test 53:283–292

    Article  CAS  Google Scholar 

  24. Chieng BW, Ibrahim NA, WanYunus WMZ (2012) Optimization of tensile strength of poly(lactic acid)/graphene nanocomposites using response surface methodology. Polym Plast Technol Eng 51:791–799

    Article  CAS  Google Scholar 

  25. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  26. Chieng BW, Ibrahim NA, WanYunus WMZ, Hussein MZ (2014) Poly(lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104

    Article  CAS  Google Scholar 

  27. Montazeri A, Khavandi A, Javadpour J, Tcharkhtchi A (2011) An investigation on the effect of sonication time and dispersing medium on the mechanical properties of MWCNT/epoxy nanocomposites. Adv Mater Res 264–265:1954–1959

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842

    Article  CAS  Google Scholar 

  29. Liang YL, Pearson RA (2009) Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer 50:4895–4905

    Article  CAS  Google Scholar 

  30. Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168

    Article  CAS  Google Scholar 

  31. Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/ epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55:4990–5000

    Article  CAS  Google Scholar 

  32. Zheng W, Chen WG, Zhao Q, Ren SX, Fu YQ (2019) Interfacial structures and mechanisms for strengthening and enhanced conductivity of graphene/epoxy nanocomposites. Polymer 163:171–177

    Article  CAS  Google Scholar 

  33. Bazrgari D, Moztarzadeh F, Sabbagh-Alvani AA, Rasoulianboroujeni M, Tahriri M, Tayebi L (2018) Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics Int 44:1220–1224

    Article  CAS  Google Scholar 

  34. Yamini S, Young RJ (1979) Crack propagation in and fractography of epoxy resins. J Mater Sci 14:1609–1618

    Article  CAS  Google Scholar 

  35. Yamini S, Young RJ (1977) Stability of crack propagation in epoxy resins. Polymer 18:1075–1080

    Article  CAS  Google Scholar 

  36. Ferriera FV, Brito FS, Franceschi W, Simonetti EAN, Cividanes LS, Chipara M, Lozano K (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Interface 10:100–109

    Article  CAS  Google Scholar 

  37. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Hollertz R, Nesch FA, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Article  CAS  Google Scholar 

  38. Francisco W, Ferreira FV, Ferreira EV, Cividanes LS, Coutinho AR, Thim GP (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerosp Technol Manage 7:289–293

    Article  CAS  Google Scholar 

  39. Ribeiro H, Da Silva WM, Neves JC, Calado HDR, Paniago R, Seara LM, Camarano DDM, Silva GG (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192

    Article  CAS  Google Scholar 

  40. Jia X, Zheng J, Lin S, Li W, Cai Q, Sui G, Yang X (2015) Highly moisture-resistant epoxy composites: an approach based on liquid nano-reinforcement containing well-dispersed activated montmorillonite. RSC Adv 5:44853–44864

    Article  CAS  Google Scholar 

  41. Tao Q, Su LN, Frost RL, He HP, Thang BKG (2014) Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system. Appl Clay Sci 95:317–322

    Article  CAS  Google Scholar 

  42. Su L, Zeng X, He H, Tao Q, Komarneni S (2017) Preparation of functionalized kaolinite/ epoxy resin nanocomposites with enhanced thermal properties. Appl Clay Sci 148:103–108

    Article  CAS  Google Scholar 

  43. Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  44. Chan M-I, Lau K-T, Wong TT, Cardona F (2011) Interfacial bonding characteristic of nanoclay/polymer composites. Appl Surf Sci 285:860–864

    Article  CAS  Google Scholar 

  45. Nie W, Liu J, Liu W, Wang J, Tang T (2015) Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide. Polym Degrad Stab 111:247–256

    Article  CAS  Google Scholar 

  46. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  47. Park S, Lee K-S, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical via chemical cross-linking. ACS Nano 2:572–578

    Article  CAS  PubMed  Google Scholar 

  48. Park S, Dikin DA, Nguyen SBT, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113:15801–15804

    Article  CAS  Google Scholar 

  49. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285:855–863

    Article  CAS  Google Scholar 

  50. Yahia IS, Mohammed MI, Nawar AM (2019) Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys B Phys Cond Matt 556:48–60

    Article  CAS  Google Scholar 

  51. Ahmad J, Deshmukh K, Habib M, Hägg MB (2014) Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes. Arab J Sci Eng 39:6805–6814

    Article  CAS  Google Scholar 

  52. Li W, Liang R, Hu A, Huang Z, Zhou YN (2014) Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv 4:36959–36966

    Article  CAS  Google Scholar 

  53. Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil A (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37:987–997

    Article  CAS  Google Scholar 

  54. More SS, Dhokane RJ, Mohril SV (2016) Study on structural characterization and dielectric properties of PVA–TiO2 composite. IOSR J Appl Phys 8:28–32

    Google Scholar 

  55. Rafiee M, Nitzsche F, Laliberte J, Hind S, Robitaille F, Labrosse MR (2019) Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide, and reduced graphene-oxide. Compos Part B Eng 164:1–9

    Article  CAS  Google Scholar 

  56. Pathak AK, Kumar V, Sharma S, Yokozeki T, Dhakate SR (2019) Improved thermomechanical and electrical properties of reduced graphene oxide reinforced polyaniline-dodecylbenzenesulfonic acid/divinylbenzene nanocomposites. J Colloid Interface Sci 533:548–560

    Article  CAS  PubMed  Google Scholar 

  57. Teng CC, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    Article  CAS  Google Scholar 

  58. El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Derbalah AS, Masoud MS (2019) Fabrication and characterization of graphene oxide-titanium dioxide nanocomposite for degradation of some toxic insecticides. J Ind Eng Chem 69:315–323

    Article  CAS  Google Scholar 

  59. Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301. https://doi.org/10.1103/PhysRevLett.89.058301

    Article  CAS  PubMed  Google Scholar 

  60. Zhao X, Li Y, Chen W, Li S, Zhao Y, Du S (2019) Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization. Compos Sci Technol 171:180–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arul Mozhi Selvan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohit, H., Selvan, V.A.M. Physical and thermomechanical characterization of the novel aluminum silicon carbide-reinforced polymer nanocomposites. Iran Polym J 28, 823–837 (2019). https://doi.org/10.1007/s13726-019-00746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00746-y

Keywords

Navigation