Skip to main content

Advertisement

Log in

Partitioning of the High Strength Steel Contained Ti Microalloy Element at the Temperatures Above and Below Martensitic Transformation Start Temperature (Ms)

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this study, a high strength steel is partitioned at two temperatures (below and over Ms). Structure and main mechanical properties of the samples were studied by scanning electron microscopy, X-ray diffraction, tensile test, microhardness test and pin-on-disk test. The results confirmed that carbon content in austenite phase (Cγ) and R.A (Retained Austenite) volume fraction (Vγ) increased by increasing the partitioning temperature (PT) from a PT < Ms to a PT > Ms. Vγ and Cγ in R.A for the sample partitioned at 400 °C was as recorded 22.51% and 0.435 wt.%, respectively. Ultimate strength, fracture strain, hardness and friction coefficient of this sample were recorded as 1102 MPa, 22.5%, 290 HB and 0.38, respectively. Partitioning temperature above Ms was recognized to be more efficient because of the better mechanical properties of the sample comparing with PT below Ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Quenching temperature.

  2. Martensitic transformation finish temperature.

  3. Partitioning temperature.

References

  1. R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel. Mater. Sci. Eng. A. 394, 339–352 (2005)

    Article  Google Scholar 

  2. P. Liu, Yu. Xiangyun, K. Wang, B. Zhu, J. Li, Y. Zhang, A new hot stamping process with quenching and partitioning treatment. Adv. Mater. Res. 1095, 673–676 (2015)

    Article  Google Scholar 

  3. Li. Wang, J.G. Speer, Quenching and partitioning steel heat treatment. Metallogr. Microstruct. Anal. 2, 268–281 (2013)

    Article  Google Scholar 

  4. Ji. Dong, C. Li, C. Liu, Y. Huang, Yu. Liming, H. Li, Y. Liu, Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel. Mater. Sci. Eng. A. 705, 249–256 (2017)

    Article  CAS  Google Scholar 

  5. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Martensitic transformation of individual grains in low-al-loyed TRIP steels. Scr. Mater. 56(5), 421–424 (2007)

    Article  CAS  Google Scholar 

  6. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically pro-cessed C-Mn-Si transformation-induced plasticity steel. Metall. Mater. Trans. A. 34(8), 1599–1609 (2003)

    Article  Google Scholar 

  7. S. Ayenampudi, C. Celada-Casero, J. Sietsma, M.J. Santofimia, Microstructure evolution during high-temperature partitioning of a medium-Mn quenching and partitioning steel. Materialia. 8, 100492 (2019). https://doi.org/10.1016/j.mtla.2019.100492

    Article  CAS  Google Scholar 

  8. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Carbon partitioning into austenite after martensite transformation. Acta Mater. 51(9), 2611–2622 (2003)

    Article  CAS  Google Scholar 

  9. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: acritical assessment. Acta Mater. 56(1), 16–22 (2008)

    Article  CAS  Google Scholar 

  10. G. Khalaj, H. Pouraliakbar, K.R. Mamaghani, M.-J. Khalaj, Modeling the correlation between heat treatment, chemical composition and bainite fraction of pipeline steels by means of artifcial neural networks 351–368 (2013).

  11. G. Khalaj, A. Nazari, H. Pouraliakbar, Prediction martensite fraction of microalloyed steel by artificial neural networks. Neural Netw. World. 2, 117–130 (2013)

    Article  Google Scholar 

  12. L. Wu, T. Yao, Y. Wang, J. Zhang, F. Xiao, B. Liao, L.L. Wu, T.K. Yao, J.W. Zhang, F.R. Xiao, Understanding the mechanical properties of vanadium carbides: nano-indentation measurement and first-principles calculations. J. Alloys Compd. 548, 60–64 (2013)

    Article  CAS  Google Scholar 

  13. Z. Xiaosheng, L. Chenxi, Y. Liming, L. Yongchang, L. Huijun, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review. J. Mater. Sci. Technol. 31(3), 235–242 (2015)

    Article  Google Scholar 

  14. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, E. De Moor, Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta Mater. 90, 417–430 (2015)

    Article  CAS  Google Scholar 

  15. P. Liu, B. Zhu, Y. Wang, Y. Zhang, Coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels, in The Minerals, Metals and Materials Society and ASM International (2016)

  16. E.S. Rowland, S.R. Lyle, The application of MS points to case depth measurement. Trans. ASM. 37, 27–47 (1946)

    Google Scholar 

  17. Z. Guo, N. Saunders, P. Miodownik, J.P. Schille, Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels. Int. J. Microstruct. Mater. Prop. 4(2), 187–195 (2009)

    CAS  Google Scholar 

  18. Y.G. Deng, H.S. Di, R.D.K. Misra, Microstructure and mechanical property relationship in a high strength high-Al low-Si hot dip galvanized steel under quenching and partitioning process. J. Market. Res. 9, 14401–14411 (2020). https://doi.org/10.1016/j.jmrt.2020.10.018

    Article  CAS  Google Scholar 

  19. S. Hartmann, H. Ruppersberg, Thermal expansion of cementite and thermo-elastic stresses in white cast iron. Mater. Sci. Eng. A. 190, 231–239 (1995). https://doi.org/10.1016/0921-5093(94)09616-5

    Article  Google Scholar 

  20. C.F. Jatczak, Retained Austenite and Its Measurement by X-ray Diffraction (SAE International, Warrendale, 1980), pp. 1657–1676

    Google Scholar 

  21. Y.M. Hwang, C.C. Chen, Investigation of effects of strip metals and relative sliding speeds on friction coefficients by reversible strip friction tests. Metals. 10, 1369 (2020). https://doi.org/10.3390/met10101369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kianvash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, A., Kianvash, A. & Tutunchi, A. Partitioning of the High Strength Steel Contained Ti Microalloy Element at the Temperatures Above and Below Martensitic Transformation Start Temperature (Ms). Metallogr. Microstruct. Anal. 10, 534–540 (2021). https://doi.org/10.1007/s13632-021-00768-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00768-0

Keywords

Navigation