Skip to main content
Log in

Tree bark characterization envisioning an integrated use in a biorefinery

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Tree barks are considerable waste streams in forest industries, and a potentially interesting resource for biorefineries. Barks of six relevant tree species, namely poplar (Populus × canadensis), black locust (Robinia pseudoacacia), red oak (Quercus rubra), willow (Salix sp.), Corsican pine (Pinus nigra subsp. laricio), and larch (Larix decidua), were anatomically and chemically characterized. Anatomical analysis illustrated the structural heterogeneity of the different barks with occurrence of various cell types and their arrangement in phloem, periderm, and rhytidome. Summative chemical analysis showed a high extractive content (14–30 wt%) for all barks. Black locust bark presented a substantial suberin content (10 wt%). The lignin content was similar for most barks (22–29 wt%), except for Corsican pine bark (45 wt%). Analytical pyrolysis demonstrated that softwood bark lignin was mostly G type with a small amount of H units, whereas for hardwood species S, G, and H units were present, with low S/G ratios (0.3–0.7). The cell wall structural polysaccharides were rather low. Total monosaccharides ranged from 35 to 44 wt%, with glucose being predominant for almost all barks, followed by xylose in hardwood and mannose in softwood barks. Identification of the lipophilic extractives highlighted the predominance of resin acids for softwood barks, and fatty acids and triterpenoids for all barks. Analysis of the polar bark extracts revealed large variations in the content of phenolics (265–579 mg gallic acid equivalent/g extract), flavonoids (177–391 mg catechin equivalent/g extract), and condensed tannins (88–670 mg catechin equivalent/g extract). Furthermore, the polar extracts presented a high antioxidant potential (500–1209 mg trolox equivalent/g extract), as determined by the FRAP assay. Additionally, a very strong antioxidant activity (AAI > 2), as evaluated by the DPPH assay, was observed for all barks. In summary, the results highlight the marked anatomical and chemical interspecies variability in barks, thus suggesting the need for tailored biorefining approaches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M (2020) A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367:1385–1390

    Article  Google Scholar 

  2. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  Google Scholar 

  3. Clark JH, Deswarte FEI, Farmer TJ (2009) The integration of green chemistry into future biorefineries. Biofuels Bioprod Biorefin 3:72–90

    Article  Google Scholar 

  4. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  Google Scholar 

  5. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  Google Scholar 

  6. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  Google Scholar 

  7. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599

    Article  Google Scholar 

  8. Ghatak HR (2011) Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sust Energ Rev 15:4042–4052

    Article  Google Scholar 

  9. Harkin JM, Rowe JW (1971) Bark and its possible uses, (Research note FPL; 091): 56 p., 91.

    Google Scholar 

  10. Feng S, Cheng S, Yuan Z, Leitch M, Xu CC (2013) Valorization of bark for chemicals and materials: a review. Renew Sust Energ Rev 26:560–578

    Article  Google Scholar 

  11. Stafford W, De Lange W, Nahman A, Chunilall V, Lekha P, Andrew J, Johakimu J, Sithole B, Trotter D (2020) Forestry biorefineries. Renew Energy 154:461–475

    Article  Google Scholar 

  12. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  13. Angyalossy V, Pace MR, Evert RF, Marcati CR, Oskolski AA, Terrazas T, Kotina E, Lens F, Mazzoni-Viveiros SC, Angeles G, Machado SR, Crivellaro A, Rao KS, Junikka L, Nikolaeva N, Baas P (2016) IAWA list of microscopic bark features. IAWA J 37:517–615

    Article  Google Scholar 

  14. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry, Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74

    Book  Google Scholar 

  15. Kurth EF (1947) The chemical composition of barks. Chem Rev 40:33–49

    Article  Google Scholar 

  16. Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7:2803–2830

    Article  Google Scholar 

  17. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94

    Article  Google Scholar 

  18. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107

    Article  Google Scholar 

  19. Takkellapati S, Li T, Gonzalez MA (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Techn Environ Policy 20:1615–1630

    Article  Google Scholar 

  20. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    Article  Google Scholar 

  21. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis, Angew. Chem Int Ed 55:8164–8215

    Article  Google Scholar 

  22. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    Article  Google Scholar 

  23. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  Google Scholar 

  24. Renders T, Van den Bossche G, Vangeel T, Van Aelst K, Sels B (2019) Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Curr Opin Biotechnol 56:193–201

    Article  Google Scholar 

  25. Galkin MV, Samec JS (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9:1544–1558

    Article  Google Scholar 

  26. Koumba-Yoya G, Stevanovic T (2017) Transformation of sugar maple bark through catalytic organosolv pulping. Catalysts 7:294

    Article  Google Scholar 

  27. Liu L-Y, Patankar SC, Chandra RP, Sathitsuksanoh N, Saddler JN, Renneckar S (2020) Valorization of bark using ethanol–water organosolv treatment: isolation and characterization of crude lignin. ACS Sustain Chem Eng 8:4745–4754

    Article  Google Scholar 

  28. Romaní A, Larramendi A, Yáñez R, Cancela Á, Sánchez Á, Teixeira JA, Domingues L (2019) Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crop Prod 132:327–335

    Article  Google Scholar 

  29. Neiva DM, Costa RA, Gominho J, Ferreira-Dias S, Pereira H (2020) Fractionation and valorization of industrial bark residues by autohydrolysis and enzymatic saccharification. Biores Technol Rep 11:100441

    Google Scholar 

  30. Torget R, Himmel ME, Grohmann K (1991) Dilute sulfuric acid pretreatment of hardwood bark. Bioresour Technol 35:239–246

    Article  Google Scholar 

  31. Normark M, Winestrand S, Lestander TA, Jönsson LJ (2014) Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol 14:20

    Article  Google Scholar 

  32. Vangeel T, Renders T, Van Aelst K, Cooreman E, Van den Bosch S, Van den Bossche G, Koelewijn S-F, Courtin C, Sels B (2019) Reductive catalytic fractionation of black locust bark. Green Chem 21:5841–5851

    Article  Google Scholar 

  33. Kumaniaev I, Samec JSM (2018) Valorization of Quercus suber bark toward hydrocarbon bio-oil and 4-ethylguaiacol. ACS Sustain Chem Eng 6:5737–5742

    Article  Google Scholar 

  34. Garrett MD, Bennett SC, Hardacre C, Patrick R, Sheldrake GN (2013) New methods in biomass depolymerisation: catalytic hydrogenolysis of barks. RSC Adv 3:21552–21557

    Article  Google Scholar 

  35. Pereira H (2007) Cork: biology, production and uses. Elsevier, Amsterdam

    Google Scholar 

  36. Leite C, Pereira H (2017) Cork-containing barks—a review. Front Mater 3:63

    Article  Google Scholar 

  37. Şen A, Miranda I, Santos S, Graça J, Pereira H (2010) The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind Crop Prod 31:417–422

    Article  Google Scholar 

  38. Cardoso S, Ferreira J, Quilhó T, Pereira H (2017) Cork of Douglas-fir bark: impact of structural and anatomical features on usage. Ind Crop Prod 99:135–141

    Article  Google Scholar 

  39. Ferreira JP, Quilhó T, Pereira H (2017) Characterization of Betula pendula outer bark regarding cork and phloem components at chemical and structural levels in view of biorefinery integration. J Wood Chem Technol 37:10–25

    Article  Google Scholar 

  40. Mota GS, Sartori CJ, Ferreira J, Miranda I, Quilhó T, Mori FA, Pereira H (2016) Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado. Ind Crop Prod 90:65–75

    Article  Google Scholar 

  41. Sousa AF, Gandini A, Silvestre AJ, Pascoal Neto C (2008) Synthesis and characterization of novel biopolyesters from suberin and model comonomers. ChemSusChem 1:1020–1025

    Article  Google Scholar 

  42. Kumaniaev I, Navare K, Mendes NC, Placet V, Van Acker K, Samec JS (2020) Conversion of birch bark to biofuels. Green Chem 22:2255–2263

    Article  Google Scholar 

  43. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Book  Google Scholar 

  44. Neiva DM, Rencoret J, Marques G, Gutiérrez A, Gominho J, Pereira H, del Rio JC (2020) Lignin from tree barks: chemical structure and valorization. ChemSusChem 13:4537–4547

    Article  Google Scholar 

  45. Miranda I, Lima L, Quilhó T, Knapic S, Pereira H (2016) The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind Crop Prod 82:81–87

    Article  Google Scholar 

  46. Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376

    Article  Google Scholar 

  47. Rohdewald P (2002) A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther 40:158–168

    Article  Google Scholar 

  48. Nahrstedt A, Schmidt M, Jäggi R, Metz J, Khayyal MT (2007) Willow bark extract: the contribution of polyphenols to the overall effect. Wien Med Wochenschr 157:348–351

    Article  Google Scholar 

  49. Neiva DM, Luís Â, Gominho J, Domingues F, Duarte AP, Pereira H (2020) Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci Technol:1–27

  50. Salem MZM, Elansary HO, Elkelish AA, Zeidler A, Ali HM, Mervat E-H, Yessoufou K (2016) In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources 11:9421–9437

    Article  Google Scholar 

  51. Arbenz A, Averous L (2015) Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 17:2626–2646

    Article  Google Scholar 

  52. Pizzi A (2008) Tannins: major sources, properties and applications, Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 179–199

    Book  Google Scholar 

  53. Lacoste C, Čop M, Kemppainen K, Giovando S, Pizzi A, Laborie M-P, Sernek M, Celzard A (2015) Biobased foams from condensed tannin extracts from Norway spruce (Picea abies) bark. Ind Crop Prod 73:144–153

    Article  Google Scholar 

  54. Hokkanen HMT, Ahlnäs T, Alakurtti S, Demidova N, Fuchs J, Izotov D, Kleeberg H, Koskimies S, Langat M, Lynch J (2012) ForestSpeCs findings on byproducts of forest industry: could bark be more valuable than timber? In: 4th Nordic Wood Biorefinery Conference, NWBC 2012. VTT Technical Research Centre of Finland, Espoo, pp 56–59

    Google Scholar 

  55. Tharakan P, Volk T, Abrahamson L, White E (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 25:571–580

    Article  Google Scholar 

  56. Sitzia T, Cierjacks A, De Rigo D, Caudullo G (2016) Robinia pseudoacacia in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Publication office of the European Union, Luxembourg, pp 166–167

    Google Scholar 

  57. Vansteenkiste D, De Boever L, Van Acker J (2005) Alternative processing solutions for red oak (Quercus rubra) from converted forests in Flanders, Belgium, Proceedings of the COST Action E44 Conference on Broad Spectrum Utilization of Wood at BOKU Vienna, Austria, June 14-15, 2005. Universität für Bodenkultur Wien, Vienna, pp 13–26

    Google Scholar 

  58. Enescu C, de Rigo D, Caudullo G, Mauri A, Houston Durrant T (2016) Pinus nigra in Europe: distribution, habitat, usage and threats. Euro Atlas Forest Tree Spec 6:126–127

    Google Scholar 

  59. Da Ronch F, Caudullo G, Tinner W, de Rigo D (2016) Larix decidua and other larches in Europe: distribution, habitat, usage and threats

    Google Scholar 

  60. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157

    Article  Google Scholar 

  61. Pividori M, Giannetti F, Barbati A, Chirici G (2016) European Forest Types: tree species matrix. Publ. Off, Luxembourg

    Google Scholar 

  62. Pollet C, Jourez B, Hebert J (2008) Natural durability of black locust (Robinia pseudoacacia L.) wood grown in Wallonia, Belgium. Can J For Res 38:1366–1372

    Article  Google Scholar 

  63. Ball J, Carle J, Del Lungo A (2005) Contribution of poplars and willows to sustainable forestry and rural development. Unasylva 56:3–9

    Google Scholar 

  64. Vallet P, Meredieu C, Seynave I, Bélouard T, Dhôte J-F (2009) Species substitution for carbon storage: Sessile oak versus Corsican pine in France as a case study. For Ecol Manag 257:1314–1323

    Article  Google Scholar 

  65. Barbosa AC, Pace MR, Witovisk L, Angyalossy V (2010) A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J 31:373–383

    Article  Google Scholar 

  66. Neiva DM, Araújo S, Gominho J, Carneiro AdC, Pereira H (2018) An integrated characterization of Picea abies industrial bark regarding chemical composition, thermal properties and polar extracts activity. PLoS One 13:e0208270

    Article  Google Scholar 

  67. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crop Prod 36:395–400

    Article  Google Scholar 

  68. Neiva DM, Araújo S, Gominho J, Carneiro AdC, Pereira H (2018) Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: chemical and fuel characterization. Ind Crop Prod 123:262–270

    Article  Google Scholar 

  69. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Google Scholar 

  70. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  71. Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  Google Scholar 

  72. Scherer R, Godoy HT (2009) Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chem 112:654–658

    Article  Google Scholar 

  73. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  Google Scholar 

  74. Marques AV, Pereira H (2013) Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrolysis 100:88–94

    Article  Google Scholar 

  75. Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood. Holz Roh Werkst 48:281–285

    Article  Google Scholar 

  76. Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  Google Scholar 

  77. Crivellaro A, Schweingruber FH (2013) Atlas of wood, bark and pith anatomy of Eastern Mediterranean trees and shrubs: with a special focus on Cyprus. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  78. Schweingruber FH, Steiger P, Börner A (2019) Bark anatomy of trees and shrubs in the temperate Northern Hemisphere. Springer, Berlin

    Book  Google Scholar 

  79. Howard ET (1977) Bark structure of southern upland oaks. Wood Fiber Sci 9:172–183

    Google Scholar 

  80. Nunes E, Quilhó T, Pereira H (1996) Anatomy and chemical composition of Pinus pinaster bark. IAWA J 17:141–150

    Article  Google Scholar 

  81. Nunes E, Quilhó T, Pereira H (1999) Anatomy and chemical composition of Pinus pinea L. bark. Ann For Sci 56:479–484

    Article  Google Scholar 

  82. Trockenbrodt M (1991) Qualitative structural changes during bark development in Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. IAWA J 12:5–22

    Article  Google Scholar 

  83. Whitmore T (1963) Studies in systematic bark morphology: IV. The bark of beech, oak and sweet chestnut. New Phytol 62:161–169

    Article  Google Scholar 

  84. Şen AU, Quilho T, Pereira H (2011) Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk J Bot 35:45–55

    Google Scholar 

  85. Quilho T, Sousa V, Tavares F, Pereira H (2013) Bark anatomy and cell size variation in Quercus faginea. Turk J Bot 37:54

    Google Scholar 

  86. Gričar J, Jagodic Š, Prislan P (2015) Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees 29:747–757

    Article  Google Scholar 

  87. Oktaee J, Lautenschläger T, Günther M, Neinhuis C, Wagenführ A, Lindner M, Winkler A (2017) Characterization of willow bast fibers (Salix spp.) from short-rotation plantation as potential reinforcement for polymer composites. BioResources 12:4270–4282

    Article  Google Scholar 

  88. Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M (2010) Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Compos A: Appl Sci Manuf 41:131–137

    Article  Google Scholar 

  89. Sillero L, Prado R, Andrés MA, Labidi J (2019) Characterisation of bark of six species from mixed Atlantic forest. Ind Crop Prod 137:276–284

    Article  Google Scholar 

  90. Harun J, Labosky P (2007) Chemical constituents of five northeastern barks. Wood Fiber Sci 17:274–280

    Google Scholar 

  91. Kofujita H, Ettyu K, Ota M (1999) Characterization of the major components in bark from five Japanese tree species for chemical utilization. Wood Sci Technol 33:223–228

    Article  Google Scholar 

  92. Dou J, Galvis L, Holopainen-Mantila U, Reza M, Tamminen T, Vuorinen T (2016) Morphology and overall chemical characterization of willow (Salix sp.) inner bark and wood: toward controlled deconstruction of willow biomass. ACS Sustain Chem Eng 4:3871–3876

    Article  Google Scholar 

  93. Yoon S-Y, Kim B-R, Han S-H, Shin S-J (2015) Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification. Energy 81:21–26

    Article  Google Scholar 

  94. Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22:29–120

    Article  Google Scholar 

  95. Pereira H, Miranda I, Tavares F, Quilhó T, Graça J, Rodrigues J, Shatalov A, Knapic S (2011) Qualidade e utilização tecnológica do eucalipto (Eucalyptus globulus). Centro de Estudos Florestais, Lisbon

    Google Scholar 

  96. Pereira H (2013) Variability of the chemical composition of cork. BioResources 8:2246–2256

    Article  Google Scholar 

  97. Kain G, Lienbacher B, Barbu M-C, Richter K, Petutschnigg A (2018) Larch (Larix decidua) bark insulation board: interactions of particle orientation, physical–mechanical and thermal properties. Euro J Wood Wood Prod 76:489–498

    Article  Google Scholar 

  98. Maekawa E, Ichizawa T, Koshijima T (1989) An evaluation of the acid-soluble lignin determination in analyses of lignin by the sulfuric acid method. J Wood Chem Technol 9:549–567

    Article  Google Scholar 

  99. Lourenço A, Pereira H (2017) Compositional variability of lignin in biomass. In: Poletto M (ed) Lignin-trends and applications. InTech, London, pp 65–98

    Google Scholar 

  100. Santos RB, Capanema EA, Balakshin MY, Chang H-m, Jameel H (2012) Lignin structural variation in hardwood species. J Agric Food Chem 60:4923–4930

    Article  Google Scholar 

  101. Dou J, Kim H, Li Y, Padmakshan D, Yue F, Ralph J, Vuorinen T (2018) Structural characterization of lignins from willow bark and wood. J Agric Food Chem 66:7294–7300

    Article  Google Scholar 

  102. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249

    Article  Google Scholar 

  103. Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132

    Article  Google Scholar 

  104. Rencoret J, Neiva D, Marques G, Gutiérrez A, Kim H, Gominho J, Pereira H, Ralph J, José C (2019) Hydroxystilbene glucosides are incorporated into Norway spruce bark lignin. Plant Physiol 180:1310–1321

    Article  Google Scholar 

  105. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200

    Article  Google Scholar 

  106. Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748–1763

    Article  Google Scholar 

  107. Ramos PA, Moreirinha C, Santos SA, Almeida A, Freire CS, Silva AM, Silvestre AJ (2019) Valorisation of bark lipophilic fractions from three Portuguese Salix species: a systematic study of the chemical composition and inhibitory activity on Escherichia coli. Ind Crop Prod 132:245–252

    Article  Google Scholar 

  108. Devappa RK, Rakshit SK, Dekker RF (2015) Potential of poplar bark phytochemicals as value-added co-products from the wood and cellulosic bioethanol industry. BioEnergy Res 8:1235–1251

    Article  Google Scholar 

  109. Ferreira JP, Miranda I, Sousa VB, Pereira H (2018) Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS One 13:e0197135

    Article  Google Scholar 

  110. Willför S, Ali M, Karonen M, Reunanen M, Arfan M, Harlamow R (2009) Extractives in bark of different conifer species growing in Pakistan. Holzforschung 63:551–558

    Article  Google Scholar 

  111. Hafizoğlu H, Holmbom B, Reunanen M (2002) Chemical composition of lipophilic and phenolic constituents of barks from Pinus nigra, Abies bornmülleriana and Castanea sativa. Holzforschung 56:257–260

    Article  Google Scholar 

  112. Menezes JC, Edraki N, Kamat SP, Khoshneviszadeh M, Kayani Z, Mirzaei HH, Miri R, Erfani N, Nejati M, Cavaleiro JA (2017) Long chain alkyl esters of hydroxycinnamic acids as promising anticancer agents: selective induction of apoptosis in cancer cells. J Agric Food Chem 65:7228–7239

    Article  Google Scholar 

  113. Freire C, Silvestre A, Neto CP, Cavaleiro J (2002) Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 56:372–379

    Article  Google Scholar 

  114. Gominho J, Costa RA, Lourenço A, Quilhó T, Pereira H (2020) Eucalyptus globulus stumps bark: chemical and anatomical characterization under a valorisation perspective. Waste Biomass Valor:1–13

  115. König M, Scholz E, Hartmann R, Lehmann W, Rimpler H (1994) Ellagitannins and complex tannins from Quercus petraea bark. J Nat Prod 57:1411–1415

    Article  Google Scholar 

  116. Bianchi S, Kroslakova I, Janzon R, Mayer I, Saake B, Pichelin F (2015) Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species. Phytochemistry 120:53–61

    Article  Google Scholar 

  117. Luís Â, Gil N, Amaral M, Duarte A (2012) Antioxidant activities of extracts from Acacia melanoxylon, Acacia dealbata and Olea europaea and alkaloids estimation. Int J Pharm Pharm Sci 4:225–231

    Google Scholar 

  118. Johansson A (1982) By-product recovery and valorisation in the kraft industry: a review of current trends in the recovery and use of turpentine and tall oil derivatives. Biomass 2:103–113

    Article  Google Scholar 

  119. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  Google Scholar 

Download references

Funding

The Forest Research Center (CEF) was financed by Fundação para a Ciência e a Tecnologia (FCT), Portugal (UIDB/00239/2020). This work was performed in the framework of Catalisti-SBO project BIOWOOD and EoS project BIOFACT. T. V. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a doctoral fellowship and travel grant (1S64017N and V417219N). D. M. N. acknowledges a SUSFOR doctoral PhD scholarship from FCT (PD/BD/52697/2014). B. S. acknowledges EoS project BIOFACT and Catalisti-SBO project BIOWOOD for continuation of financial support for biorefinery research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Pereira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vangeel, T., Neiva, D.M., Quilhó, T. et al. Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conv. Bioref. 13, 2029–2043 (2023). https://doi.org/10.1007/s13399-021-01362-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01362-8

Keywords

Navigation