Skip to main content
Log in

Structural characterization of potassium hydroxide liquor lignin and its application in biorefinery

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The structural characteristics of the lignin from potassium hydroxide (KOH) liquor of jute stick (Corchorus capsularis) pulping were determined and compared with the isolated dioxane lignin from jute stick. The lignin structure was characterized by elemental, methoxyl group analysis, UV, FTIR, 1H-NMR, 31P-NMR, and 2D-NMR spectroscopy and molecular weight. 2D-NMR of both lignins isolated showed a predominance of β-O-4 aryl ether linkages. KOH pulping cleaved β-O-4 aryl ether linkage and increased phenolic hydroxyl group and reduced molecular weight. KOH lignin can replace 40% phenol in phenol-formaldehyde resin with satisfactory shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hammett AL, Youngs RL, Sun X, Chandra M (2001) Non-wood fiber as an alternative to wood fiber in Chinas pulp and paper industry. Holzforschung 55(2):219–224

    Article  Google Scholar 

  2. Jahan MS, Akter T, Nayeem J, Samaddar PR, Moniruzzaman M (2016b) Potassium hydroxide pulping of saccharumspontaneum (kash). J-FOR-Journal of Science & Technology for Forest Products and Processes 6(1):46–53

    Google Scholar 

  3. Jahan MS, Haris F, Rahman MM, Samaddar PR, Sutradhar S (2016a) Potassium hydroxide pulping of rice straw in biorefinery initiatives. Bioresour Technol 219:445–450

    Article  Google Scholar 

  4. FAO (2020) http://www.fao.org/faostat/en/#data/QC. Accessed 1 Aug 2020

  5. Xu F, Sun JX, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Industrial Crops and Products 23(2):180–193

  6. Huang GL, Shi JX, Langrish TA (2008) Environmentally friendly bagasse pulping with NH4 OH–KOH–AQ. Journal of Cleaner Production 16(12):1287–1293

  7. Huang G, Shi JX Langrish TA (2007) A new pulping process for wheat straw to reduce problems with the discharge of black liquor. Bioresource Technology 98(15):2829–2835

  8. Popy RS, Ni Y, Salam A, Jahan MS (2020) Mild potassium hydroxide-based alkaline integrated biorefinery process of Kash (Saccharum spontaneum). Ind Crop Prod 154:112738. https://doi.org/10.1016/j.indcrop.2020.112738

  9. Sutradhar S, Sarkar M, Nayeem J, Jahan MS, Tian C (2018) Potassium hydroxide pulping of four non-woods. Bangladesh Journal of Scientific and Industrial Research 53(1):1–6

    Article  Google Scholar 

  10. van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp & Paper Canada 107(6):38–43

    Google Scholar 

  11. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management 51(7):1412–1421

  12. Dutta S, Kim J, Ide Y, Kim JH, Hossain MSA, Bando Y, Yamauchi Y et al (2017) Cellulose-based energy devices. Materials Horizons 4:522–545. https://doi.org/10.1039/C7MH90017A

    Article  Google Scholar 

  13. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Mielenz JR (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

  14. Sutradhar S, Arafat KMY, Nayeem J, Jahan MS (2020) Organic acid lignin from rice straw in phenol-formaldehyde resin preparation for plywood. Cellul Chem Technol 54(5-6):463–471

    Article  Google Scholar 

  15. Popy RS, Nayeem J, Arafat KMY, Rahman MM, Jahan MS (2020) Mild potassium hydroxide pulping of straw. Current Research in Green and Sustainable Chemistry 3:100015

  16. Thomsen AM (1953) Method of making a lignin fertilizer base. U.S. Patent No. 2,663,628. U.S. Patent and Trademark Office, Washington, DC

  17. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877

    Article  Google Scholar 

  18. García MC, Diez JA, Vallejo A, Garcia L, Cartagena MC (1996) Use of kraft pine lignin in controlled-release fertilizer formulations. Ind Eng Chem Res 35(1):245–249

    Article  Google Scholar 

  19. Gellerstedt G, Tomani P, Axegård P, Backlund B (2013) Lignin recovery and lignin-based products. In: Integrated forest biorefineries–challenges and opportunities. Royal Society of Chemisty, Cambridge, pp 180–210

  20. Abejón R, Rabadán J, Garea A, Irabien A (2020) Comparison of supported ionic liquid membranes and polymeric ultrafiltration and nanofiltration membranes for separation of lignin and monosaccharides. Membranes 10(2):29

    Article  Google Scholar 

  21. Tomani P (2010) The lignoboost process. Cellul Chem Technol 44:53–58

    Google Scholar 

  22. Ma X, Yang X, Zheng X, Chen L, Huang L, Cao S, Akinosho H (2015) Toward a further understanding of hydrothermally pretreated holocellulose and isolated pseudo lignin. Cellulose 22(3):1687–1696

    Article  Google Scholar 

  23. Ma X, Zheng X, Yang H, Wu H, Cao S, Chen L, Huang L (2016) A perspective on lignin effects on hemicelluloses dissolution for bamboo pretreatment. Ind Crop Prod 94:117–121

    Article  Google Scholar 

  24. Zhang N, Li Z, Xiao Y, Pan Z, Jia P, Feng G, Bao C, Zhou Y, Hua L (2020) Lignin-based phenolic resin modified with whisker silicon and its application. Journal of Bioresources and Bioproducts 5(1):67–77

    Article  Google Scholar 

  25. Liao YT, Matsagar BM, Wu KCW (2018) Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain Chem Eng 6(11):13628–13643

    Article  Google Scholar 

  26. Saeed A, Jahan MS, Li H, Liu Z, Ni Y, van Heiningen A (2012) Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioenergy 39:14–19. https://doi.org/10.1016/j.biombioe.2010.08.039

  27. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215

    Article  Google Scholar 

  28. Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources 6(3):3515–3525

    Article  Google Scholar 

  29. Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6(5):7181–7192

    Article  Google Scholar 

  30. Huang Y, Duan Y, Qiu S, Wang M, Ju C, Cao H, Fang Y et al (2018) Lignin-first biorefinery: a reusable catalyst for lignin depolymerization and application of lignin oil to jet fuel aromatics and polyurethane feedstock. Sustain Energy Fuels 2(3):637–647. https://doi.org/10.1039/C7SE00535K

  31. Thielemans W, Can E, Morye SS, Wool RP (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83(2):323–331

    Article  Google Scholar 

  32. Kazzaz AE, Fatehi P (2020) Technical lignin and its potential modification routes: a mini-review. Ind Crop Prod 154:112732

    Article  Google Scholar 

  33. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568

  34. Yang S, Wu JQ, Zhang Y, Yuan TQ, Sun RC (2015) Preparation of lignin-phenol-formaldehyde resin adhesive based on active sites of technical lignin. Journal of Biobased Materials and Bioenergy 9(2):266–272

    Article  Google Scholar 

  35. Poppius-Levlin K, Hortling B, Sundquist J (1993) Milox pulping and bleaching. Possibilies to avoid chlorine chemicals. In: Proceedings of “International Symposium on Wood and Pulping Chemistry”, Beijing, People’s Republic of China, May 25–28, 1993, pp 214–222

  36. Pan XJ, Sano Y (1999) Atmospheric acetic acid pulping of rice Straw IV: physicochemical characterization of acetic acid lignins from rice straw and woods. Part 2. Chemical Structures. Holzforschung 53:590–596

    Article  Google Scholar 

  37. Zhao X, Liu D (2010) Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind Crop Prod 32(3):284–291

    Article  Google Scholar 

  38. Fergus BJ, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24(4):113–117

    Article  Google Scholar 

  39. Higuchi T, Ito Y, Kawamura I (1967) p-Hydroxyphenylpropane component of grass lignin and role of tyrosine-ammonia lyase in its formation. Phytochemistry 6:875–881

    Article  Google Scholar 

  40. Sakakibara A (1991) Chemistry of lignin. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 113–175

    Google Scholar 

  41. Islam A, Sarkanen KV (1993) The isolation and characterization of the lignins of jute (Corchorus capsularis). Holzforschung 47:123–132

    Article  Google Scholar 

  42. JAHAN MS, Mun SP (2006) Characteristics of milled wood lignins isolated from different ages of nalita wood (Trema orientalis). Cellul Chem Technol 40(6):457–467

  43. Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 45(Suppl):21–27

    Article  Google Scholar 

  44. Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer-Verlag, Berlin, pp 83–109

    Chapter  Google Scholar 

  45. Sarkanen KV, Chang HM, Allan GG (1967a) Species variation in lignins. 3. Hardwood lignins. Tappi 50(12):587

    Google Scholar 

  46. Sarkanen KV, Chang H-M, Allan GG (1967b) Species variation in lignins. 2. Conifer lignins. Tappi J 50:583–586

    Google Scholar 

  47. Huang C, He J, Narron R, Wang Y, Yong Q (2017) Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene. ACS Sustain Chem Eng 5:11770–11779. https://doi.org/10.1021/acssuschemeng.7b03415

    Article  Google Scholar 

  48. Yoo CG, Li M, Meng X, Pu Y, Ragauskas AJ (2017) Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chem 19:2006–2016. https://doi.org/10.1039/c6gc03627a

    Article  Google Scholar 

  49. Domínguez-Robles J, Sánchez R, Díaz-Carrasco P, Espinosa E, García-Domínguez MT, Rodríguez A (2017) Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int J Biol Macromol 104:909–918. https://doi.org/10.1016/j.ijbiomac.2017.07.015

    Article  Google Scholar 

  50. Rossberg C, Janzon R, Saake B, Leschinsky M (2019) Effect of process parameters in pilot scale operation on properties of organosolv lignin. Bio Resources 14:4543–4559. https://doi.org/10.15376/biores.14.2.4543-4559

    Article  Google Scholar 

  51. Ibrahim MNM, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr Polym 86(1):112–119

    Article  Google Scholar 

  52. Del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jimenez-Barbero J et al (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57(21):10271–10281. https://doi.org/10.1021/jf900815x

  53. Gong X, Liu T, Yu S, Meng Y, Lu J, Cheng Y, Wang H (2020) The preparation and performance of a novel lignin-based adhesive without formaldehyde. Ind Crop Prod 153:112593

    Article  Google Scholar 

  54. Luo B, Jia Z, Jiang H, Wang S, Min D (2020) Improving the reactivity of sugarcane bagasse Kraft lignin by a combination of fractionation and phenolation for phenol–formaldehyde adhesive applications. Polymers 12(8):1825

    Article  Google Scholar 

  55. Younesi-Kordkheili H, Pizzi A (2020) Improving the properties of urea-lignin-glyoxal resin as a wood adhesive by small addition of epoxy. Int J Adhes Adhes 102:102681. https://doi.org/10.1016/j.ijadhadh.2020.102681

    Article  Google Scholar 

  56. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101. https://doi.org/10.1016/j.ijadhadh.2013.09.001

  57. Pang B, Yang S, Fang W, Yuan TQ, Argyropoulos DS, Sun RC (2017) Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Ind Crop Prod 108:316–326. https://doi.org/10.1016/j.indcrop.2017.07.009

  58. Jablonskis A, Arshanitsa A, Arnautov A, Telysheva G, Evtuguin D (2018) Evaluation of Ligno Boost™ softwood kraft lignin epoxidation as an approach for its application in cured epoxy resins. Ind Crop Prod 112:225–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sarwar Jahan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Arafat, K.M.Y., Jin, Y. et al. Structural characterization of potassium hydroxide liquor lignin and its application in biorefinery. Biomass Conv. Bioref. 13, 727–737 (2023). https://doi.org/10.1007/s13399-020-01202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01202-1

Keywords

Navigation