Skip to main content

Advertisement

Log in

Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Wastewater utilization as a medium for microalgal cultivation have copious simultaneous perquisites such as removal of nutrients (80–100%), heavy metal removal, carbon dioxide (CO2) sequestration from atmosphere (1.83 kg CO2 kg−1 biomass), and high biomass production for biofuel generation (40–50% higher than crops feedstock). Municipal, industrial, domestic, agro-industrial, and several other types of wastewater treatment by coupling microalgal cultivation require two sorts of systems: open pond systems (OPs) and closed photobioreactors (PBRs). Many studies have focused on the utilization of OPs and closed PBRs for microalgal cultivation; however, comprehensive information in context of nutrient removal efficiency and biomass productivity with updated data is not fully addressed. In this review, wastewater treatment coupled microalgal cultivation for biofuel generation is emphasized in OPs and closed PBRs. The limitations of both systems, implementation of different approaches to enhance the biomass productivity, and economic feasibility are also highlighted. Based on the literature analysis, PBRs are more effective in wastewater treatment and biomass/biofuel generation due to contamination control and management of major parameters affecting microalgal growth. However, the implementation of various techniques to reduce the capital investment in PBR reactor designs is required for further use on commercial scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Díez-Montero R, Belohlav V, Ortiz A, Uggetti E, García-Galán MJ, García J (2020) Evaluation of daily and seasonal variations in a semi-closed photobioreactor for microalgae-based bioremediation of agricultural runoff at full-scale. Algal Res 47:101859. https://doi.org/10.1016/j.algal.2020.101859

    Article  Google Scholar 

  2. Salama E-S, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang I-S, Min B, Jeon B-H (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211. https://doi.org/10.1016/j.rser.2017.05.091

    Article  Google Scholar 

  3. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831. https://doi.org/10.1016/j.jenvman.2016.06.059

    Article  Google Scholar 

  4. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation: a review. Sci Total Environ 704:135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  Google Scholar 

  5. Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang J-S (2018) Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng 91:332–344. https://doi.org/10.1016/j.jtice.2018.05.039

    Article  Google Scholar 

  6. Ansari FA, Singh P, Guldhe A, Bux F (2017) Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res 21:169–177. https://doi.org/10.1016/j.algal.2016.11.015

    Article  Google Scholar 

  7. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB (2012) Microalgae and wastewater treatment. Saudi J Bio Sci 19(3):257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

    Article  Google Scholar 

  8. Krasaesueb N, Incharoensakdi A, Khetkorn W (2019) Utilization of shrimp wastewater for poly-beta-hydroxybutyrate production by Synechocystis sp. PCC 6803 strain DeltaSphU cultivated in photobioreactor. Biotechnol Rep 23:e00345. https://doi.org/10.1016/j.btre.2019.e00345

    Article  Google Scholar 

  9. Daverey A, Pandey D, Verma P, Verma S, Shah V, Dutta K, Arunachalam K (2019) Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour Technol Rep 7:100252. https://doi.org/10.1016/j.biteb.2019.100252

    Article  Google Scholar 

  10. Ho S-H, Chen Y-D, Qu W-Y, Liu F-Y, Wang Y (2019) Chapter 8 - algal culture and biofuel production using wastewater. In: Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y (eds) Biofuels from algae (second edition). Elsevier, pp 167-198. https://doi.org/10.1016/B978-0-444-64192-2.00008-1

  11. Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390. https://doi.org/10.1016/j.algal.2017.06.004

    Article  Google Scholar 

  12. Alam MA, Wang Z, Yuan Z (2017) Generation and harvesting of microalgae biomass for biofuel production. Prosp Challeng Algal Biotechnol 89-111:89–111. https://doi.org/10.1007/978-981-10-1950-0_3

    Article  Google Scholar 

  13. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  14. Min M, Hu B, Mohr MJ, Shi A, Ding J, Sun Y, Jiang Y, Fu Z, Griffith R, Hussain F, Mu D, Nie Y, Chen P, Zhou W, Ruan R (2014) Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment-a case study. Appl Biochem Biotechnol 172(3):1390–1406. https://doi.org/10.1007/s12010-013-0603-6

    Article  Google Scholar 

  15. Liang Y, Kashdan T, Sterner C, Dombrowski L, Petrick I, Kröger M, Höfer R (2015) Chapter 2 - algal biorefineries. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 35–90. https://doi.org/10.1016/B978-0-444-63453-5.00002-1

    Chapter  Google Scholar 

  16. Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO(2) biofixation. Front Bioeng Biotechnol 7:42–42. https://doi.org/10.3389/fbioe.2019.00042

    Article  Google Scholar 

  17. Afzal I, Shahid A, Ibrahim M, Liu T, Nawaz M, Mehmood MA (2017) Chapter 3 - Microalgae: a promising feedstock for energy and high-value products. In: Zia KM, Zuber M, Ali M (eds) Algae based polymers, blends, and composites. Elsevier, pp 55-75. https://doi.org/10.1016/B978-0-12-812360-7.00003-3

  18. Solovchenko A, Lukyanov A, Gokare Aswathanarayana R, Pleissner D, Ambati RR (2020) Recent developments in microalgal conversion of organic-enriched waste streams. Curr Opin Green Sustain Chem 24:61–66. https://doi.org/10.1016/j.cogsc.2020.03.006

    Article  Google Scholar 

  19. Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S, Bhattacharyya S, Yadav VK, Bach Q-V (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod:123227. https://doi.org/10.1016/j.jclepro.2020.123227

  20. Amenorfenyo DK, Huang X, Li C, Li F, Zeng Q, Zhang N, Xie L, Wang P (2020) A review of microalgae and other treatment methods of distillery wastewater. Water Environ J. https://doi.org/10.1111/wej.12552

  21. Wollmann F, Dietze S, Ackermann J-U, Bley T, Walther T, Steingroewer J, Krujatz F (2019) Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci 19(12):860–871. https://doi.org/10.1002/elsc.201900071

    Article  Google Scholar 

  22. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SH (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renwe Sustain Energ Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  Google Scholar 

  23. Molina Grima E, Acién Fernández FG, Camacho FG, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  Google Scholar 

  24. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111. https://doi.org/10.1016/j.apenergy.2012.07.040

    Article  Google Scholar 

  25. Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12(2):131–151. https://doi.org/10.1007/s11157-012-9307-6

    Article  Google Scholar 

  26. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    Article  Google Scholar 

  27. Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315. https://doi.org/10.1023/A:1017560006941

    Article  Google Scholar 

  28. De Bhowmick G, Subramanian G, Mishra S, Sen R (2014) Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: a case study. Algal Res 6:201–209. https://doi.org/10.1016/j.algal.2014.07.005

    Article  Google Scholar 

  29. Ashokkumar V, Chen W-H, Ngamcharussrivichai C, Agila E, Ani FN (2019) Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale-a low cost biorefinery approach. Energy Convers Manag 186:188–199. https://doi.org/10.1016/j.enconman.2019.02.056

    Article  Google Scholar 

  30. Dahmani S, Zerrouki D, Ramanna L, Rawat I, Bux F (2016) Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour Technol 219:749–752. https://doi.org/10.1016/j.biortech.2016.08.019

    Article  Google Scholar 

  31. Durai K, Muthukumaran M, Balakumar B (2016) Mass cultivation of microalgae in open Raceway pond for biomass and biochemicals production. 3:247-260

  32. Arendra K, Sahoo SNS, Satyawati S, Naik SN (2015) Open pond biological treatment of wastewater using microalgae. IJERT RACEE 4:3

    Google Scholar 

  33. Osundeko O, Pittman JK (2014) Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresour Technol 152:355–363. https://doi.org/10.1016/j.biortech.2013.11.035

    Article  Google Scholar 

  34. Boopathy AB, Jayakumar T, Chinnasamy S, Rajaram MG, Mohan N, Nagaraj S, Rengasamy R, Manubolu M, Sheu J-R, Chang C-C (2020) Biomass and lipid production potential of an Indian marine algal isolate Tetraselmis striata BBRR1. Energies 13(2):341. https://doi.org/10.3390/en13020341

    Article  Google Scholar 

  35. Zhang Q, Yu Z, Zhu L, Ye T, Zuo J, Li X, Xiao B, Jin S (2018) Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production. Water Res 139:144–157. https://doi.org/10.1016/j.watres.2018.03.076

    Article  Google Scholar 

  36. Naaz F, Bhattacharya A, Pant KK, Malik A (2019) Investigations on energy efficiency of biomethane/biocrude production from pilot scale wastewater grown algal biomass. Appl Energy 254:113656. https://doi.org/10.1016/j.apenergy.2019.113656

    Article  Google Scholar 

  37. Usha MT, Sarat Chandra T, Sarada R, Chauhan VS (2016) Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour Technol 214:856–860. https://doi.org/10.1016/j.biortech.2016.04.060

    Article  Google Scholar 

  38. Klinthong W, Yang Y-H, Huang C-H, Tan C-S (2015) A Review: microalgae and their applications in CO2 Capture and renewable energy. Aerosol Air Qual Res 15(2):712–742. https://doi.org/10.4209/aaqr.2014.11.0299

    Article  Google Scholar 

  39. Costa JAV, Freitas BCB, Santos TD, Mitchell BG, Morais MG (2019) Open pond systems for microalgal culture. 199-223. https://doi.org/10.1016/b978-0-444-64192-2.00009-3

  40. Masojidek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38(2):307–317. https://doi.org/10.1007/s10295-010-0774-x

    Article  Google Scholar 

  41. Apel AC, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst Eng 38(6):995–1008. https://doi.org/10.1007/s00449-015-1363-1

    Article  Google Scholar 

  42. Sawant SS, Khadamkar HP, Mathpati CS, Pandit R, Lali AM (2018) Computational and experimental studies of high depth algal raceway pond photo-bioreactor. Renew Energy 118:152–159. https://doi.org/10.1016/j.renene.2017.11.015

    Article  Google Scholar 

  43. Seyed Hosseini N, Shang H, Ross GM, Scott JA (2015) Microalgae cultivation in a novel top-lit gas-lift open bioreactor. Bioresour Technol 192:432–440. https://doi.org/10.1016/j.biortech.2015.05.092

    Article  Google Scholar 

  44. Huang J, Yang Q, Chen J, Wan M, Ying J, Fan F, Wang J, Li W, Li Y (2016) Design and optimization of a novel airlift-driven sloping raceway pond with numerical and practical experiments. Algal Res 20:164–171. https://doi.org/10.1016/j.algal.2016.09.023

    Article  Google Scholar 

  45. Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132. https://doi.org/10.1016/j.rser.2013.11.054

    Article  Google Scholar 

  46. Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D (2012) Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J Appl Phycol V 25(2):485–495. https://doi.org/10.1007/s10811-012-9882-5

    Article  Google Scholar 

  47. Huang J, Qu X, Wan M, Ying J, Li Y, Zhu F, Wang J, Shen G, Chen J, Li W (2015) Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Res 10:64–71. https://doi.org/10.1016/j.algal.2015.04.012

    Article  Google Scholar 

  48. Zhang Q, Xue S, Yan C, Wu X, Wen S, Cong W (2015) Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresour Technol 198:150–156. https://doi.org/10.1016/j.biortech.2015.08.144

    Article  Google Scholar 

  49. Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Heaven S, Banks CJ (2013) Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol 137:188–195. https://doi.org/10.1016/j.biortech.2013.03.127

    Article  Google Scholar 

  50. Kumar K, Mishra SK, Shrivastav A, Park MS, Yang J-W (2015) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sust Energ Rev 51:875–885. https://doi.org/10.1016/j.rser.2015.06.033

    Article  Google Scholar 

  51. Chen W-H, Huang M-Y, Chang J-S, Chen C-Y (2014) Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour Technol 169:258–264. https://doi.org/10.1016/j.biortech.2014.06.086

    Article  Google Scholar 

  52. Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201. https://doi.org/10.1016/j.biortech.2014.11.026

    Article  Google Scholar 

  53. Cheng J, Yang Z, Ye Q, Zhou J, Cen K (2016) Improving CO2 fixation with microalgae by bubble breakage in raceway ponds with up-down chute baffles. Bioresour Technol 201:174–181. https://doi.org/10.1016/j.biortech.2015.11.044

    Article  Google Scholar 

  54. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  Google Scholar 

  55. Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renew Sust Energ Rev 27:622–653. https://doi.org/10.1016/j.rser.2013.05.063

    Article  Google Scholar 

  56. Zeng X, Danquah MK, Chen XD, Lu Y (2011) Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sust Energ Rev 15(6):3252–3260. https://doi.org/10.1016/j.rser.2011.04.014

    Article  Google Scholar 

  57. Fernandes BD, Mota A, Ferreira A, Dragone G, Teixeira JA, Vicente AA (2014) Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chem Eng Sci 117:445–454. https://doi.org/10.1016/j.ces.2014.06.043

    Article  Google Scholar 

  58. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16(5):3043–3053. https://doi.org/10.1016/j.rser.2012.02.055

    Article  Google Scholar 

  59. Sivakaminathan S, Wolf J, Yarnold J, Roles J, Ross IL, Stephens E, Henderson G, Hankamer B (2020) Light guide systems enhance microalgae production efficiency in outdoor high rate ponds. Algal Res 47:101846. https://doi.org/10.1016/j.algal.2020.101846

    Article  Google Scholar 

  60. Chisti Y (2013) Raceways-based Production of algal crude oil. Green 3(3-4). https://doi.org/10.1515/green-2013-0018

  61. Rahaman MSA, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sust Energ Rev 15(8):4002–4012. https://doi.org/10.1016/j.rser.2011.07.031

    Article  Google Scholar 

  62. Slegers PM, Lösing MB, Wijffels RH, van Straten G, van Boxtel AJB (2013) Scenario evaluation of open pond microalgae production. Algal Res 2(4):358–368. https://doi.org/10.1016/j.algal.2013.05.001

    Article  Google Scholar 

  63. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  Google Scholar 

  64. Borowitzka MA, Moheimani NR (2013) Open Pond Culture Systems. 133-152. https://doi.org/10.1007/978-94-007-5479-9_8

  65. Andrade BB, Cardoso LG, Assis DJ, Costa JAV, Druzian JI, da Cunha Lima ST (2019) Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresour Technol 284:340–348. https://doi.org/10.1016/j.biortech.2019.03.144

    Article  Google Scholar 

  66. Ashok V, Shriwastav A, Bose P, Gupta SK (2019) Phycoremediation of wastewater using algal-bacterial photobioreactor: effect of nutrient load and light intensity. Bioresour Technol Rep 7:100205. https://doi.org/10.1016/j.biteb.2019.100205

    Article  Google Scholar 

  67. Rueda E, García-Galán MJ, Ortiz A, Uggetti E, Carretero J, García J, Díez-Montero R (2020) Bioremediation of agricultural runoff and biopolymers production from cyanobacteria cultured in demonstrative full-scale photobioreactors. Process Saf Environ Prot 139:241–250. https://doi.org/10.1016/j.psep.2020.03.035

    Article  Google Scholar 

  68. Almomani F, Al Ketife A, Judd S, Shurair M, Bhosale RR, Znad H, Tawalbeh M (2019) Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ 662:662–671. https://doi.org/10.1016/j.scitotenv.2019.01.144

    Article  Google Scholar 

  69. Novoveská L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res 18:86–94. https://doi.org/10.1016/j.algal.2016.05.033

    Article  Google Scholar 

  70. Leite LS, Hoffmann MT, Daniel LA (2019) Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J Water Process Eng 31:100821. https://doi.org/10.1016/j.jwpe.2019.100821

    Article  Google Scholar 

  71. Ruiz-Martinez A, Martin Garcia N, Romero I, Seco A, Ferrer J (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol 126:247–253. https://doi.org/10.1016/j.biortech.2012.09.022

    Article  Google Scholar 

  72. Praveen P, Loh K-C (2016) Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor. Bioresour Technol 206:180–187. https://doi.org/10.1016/j.biortech.2016.01.102

    Article  Google Scholar 

  73. García D, Posadas E, Blanco S, Acién G, García-Encina P, Bolado S, Muñoz R (2018) Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresour Technol 248:120–126. https://doi.org/10.1016/j.biortech.2017.06.079

    Article  Google Scholar 

  74. Ashokkumar V, Salam Z, Tiwari ON, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Convers Manag 101:778–786. https://doi.org/10.1016/j.enconman.2015.06.006

    Article  Google Scholar 

  75. Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266. https://doi.org/10.1016/j.biortech.2013.11.100

    Article  Google Scholar 

  76. Ferreira A, Ribeiro B, Ferreira A, Tavares M, Vladic J, Vidovic S, Cvetkovic D, Melkonyan L, Avetisova G, Goginyan V, Gouveia L (2019) Scenedesmus obliquus microalga-based biorefinery-from brewery effluent to bioactive compounds, biofuels and biofertilizers- aiming at a circular bioeconomy. Biofuels Bioprod Biorefin 13:1169–1186. https://doi.org/10.1002/bbb.2032

    Article  Google Scholar 

  77. Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165(1):123–137. https://doi.org/10.1007/s12010-011-9238-7

    Article  Google Scholar 

  78. Rosli S-S, Lim J-W, Jumbri K, Lam M-K, Uemura Y, Ho C-D, Tan W-N, Cheng C-K, Kadir W-N-A (2019) Modeling to enhance attached microalgal biomass growth onto fluidized beds packed in nutrients-rich wastewater whilst simultaneously biofixing CO2 into lipid for biodiesel production. Energy Convers Manag 185:1–10. https://doi.org/10.1016/j.enconman.2019.01.077

    Article  Google Scholar 

  79. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506. https://doi.org/10.1021/bp060065r

    Article  Google Scholar 

  80. Fernandez FGA, Sevilla JMF, Grima EM (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12(2):131–151. https://doi.org/10.1007/s11157-012-9307-6

    Article  Google Scholar 

  81. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912. https://doi.org/10.1016/j.biotechadv.2012.01.019

    Article  Google Scholar 

  82. Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energ 35(19):10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029

    Article  Google Scholar 

  83. Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176. https://doi.org/10.1016/j.algal.2016.03.010

    Article  Google Scholar 

  84. Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82(2):170–179. https://doi.org/10.1002/bit.10563

    Article  Google Scholar 

  85. Huang J, Hankamer B, Yarnold J (2019) Design scenarios of outdoor arrayed cylindrical photobioreactors for microalgae cultivation considering solar radiation and temperature. Algal Res 41:101515. https://doi.org/10.1016/j.algal.2019.101515

    Article  Google Scholar 

  86. Hsieh C-H, Wu W-T (2009) A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochem Eng J 46(3):300–305. https://doi.org/10.1016/j.bej.2009.06.004

    Article  Google Scholar 

  87. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102(8):4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054

    Article  Google Scholar 

  88. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. https://doi.org/10.1098/rsif.2009.0322

    Article  Google Scholar 

  89. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133

    Article  Google Scholar 

  90. Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Technol 198:316–324. https://doi.org/10.1016/j.biortech.2015.09.030

    Article  Google Scholar 

  91. Sun Y, Huang Y, Liao Q, Fu Q, Zhu X (2016) Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Technol 207:31–38. https://doi.org/10.1016/j.biortech.2016.01.136

    Article  Google Scholar 

  92. Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sust Energ Rev 52:418–429. https://doi.org/10.1016/j.rser.2015.07.090

    Article  Google Scholar 

  93. Rosli SS, Amalina Kadir WN, Wong CY, Han FY, Lim JW, Lam MK, Yusup S, Kiatkittipong W, Kiatkittipong K, Usman A (2020) Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew Sust Energ Rev 134:110306. https://doi.org/10.1016/j.rser.2020.110306

    Article  Google Scholar 

  94. Mohsenpour SF, Willoughby N (2016) Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenergy 85:168–177. https://doi.org/10.1016/j.biombioe.2015.12.002

    Article  Google Scholar 

  95. Choi YY, Joun JM, Lee J, Hong ME, Pham H-M, Chang WS, Sim SJ (2017) Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour Technol 244:1235–1244. https://doi.org/10.1016/j.biortech.2017.05.147

    Article  Google Scholar 

  96. Sánchez-García L, Cabello J, Jiménez-García LF, Revah S, Morales-Ibarría M (2020) Enhancing the lipid content of Scenedesmus obtusiusculus AT-UAM by controlled acidification under indoor and outdoor conditions. Algal Res 51:102024. https://doi.org/10.1016/j.algal.2020.102024

    Article  Google Scholar 

  97. Khadim SR, Singh P, Singh AK, Tiwari A, Mohanta A, Asthana RK (2018) Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresour Technol 270:20–29. https://doi.org/10.1016/j.biortech.2018.08.071

    Article  Google Scholar 

  98. Xu X, Gu X, Wang Z, Shatner W, Wang Z (2019) Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sust Energ Rev 110:65–82. https://doi.org/10.1016/j.rser.2019.04.050

    Article  Google Scholar 

  99. Reymann T, Kerner M, Kümmerer K (2020) Assessment of the biotic and abiotic elimination processes of five micropollutants during cultivation of the green microalgae Acutodesmus obliquus. Bioresour Technol Rep 11:100512. https://doi.org/10.1016/j.biteb.2020.100512

    Article  Google Scholar 

  100. Chaisutyakorn P, Praiboon J, Kaewsuralikhit C (2018) The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. J Appl Phycol 30(1):37–45. https://doi.org/10.1007/s10811-017-1186-3

    Article  Google Scholar 

  101. Ishika T, Moheimani NR, Bahri PA (2017) Sustainable saline microalgae co-cultivation for biofuel production: a critical review. Renew Sust Energ Rev 78:356–368. https://doi.org/10.1016/j.rser.2017.04.110

    Article  Google Scholar 

  102. Correa DF, Beyer HL, Possingham HP, Thomas-Hall SR, Schenk PM (2017) Biodiversity impacts of bioenergy production: microalgae vs. first generation biofuels. Renew Sust Energ Rev 74:1131–1146. https://doi.org/10.1016/j.rser.2017.02.068

    Article  Google Scholar 

  103. Freitas BCB, Cassuriaga APA, Morais MG, Costa JAV (2017) Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima. Bioresour Technol 238:248–253. https://doi.org/10.1016/j.biortech.2017.04.031

    Article  Google Scholar 

  104. Narala R, Garg S, Sharma K, Thomas-Hall S, Deme M, Li Y, Schenk P (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage Hybrid system. Front Energy Res 4. https://doi.org/10.3389/fenrg.2016.00029

  105. Pires JCM (2015) Chapter 5 - Mass production of microalgae. In: Kim S-K (ed) Handbook of marine microalgae. Academic Press, Boston, pp 55–68. https://doi.org/10.1016/B978-0-12-800776-1.00005-4

    Chapter  Google Scholar 

  106. Van Den Hende S, Beelen V, Bore G, Boon N, Vervaeren H (2014) Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresour Technol 159:342–354. https://doi.org/10.1016/j.biortech.2014.02.113

    Article  Google Scholar 

  107. Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrogen Energ 42(12):8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125

    Article  Google Scholar 

  108. Xie B, Gong W, Tian Y, Qu F, Luo Y, Du X, Tang X, Xu D, Lin D, Li G, Liang H (2018) Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chem Eng J 350:1092–1102. https://doi.org/10.1016/j.cej.2018.06.032

    Article  Google Scholar 

  109. Nguyen TDP, Nguyen DH, Lim JW, Chang C-K, Leong HY, Tran TNT, Vu TBH, Nguyen TTC, Show PL (2019) Investigation of the Relationship between bacteria growth and lipid Production cultivating of microalgae Chlorella Vulgaris in seafood wastewater. Energies 12(12):2282. https://doi.org/10.3390/en12122282

    Article  Google Scholar 

  110. Arora N, Jaiswal KK, Kumar V, Vlaskin MS, Nanda M, Pruthi V, Chauhan PK (2020) Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture. Bioresour Technol 297:122489. https://doi.org/10.1016/j.biortech.2019.122489

    Article  Google Scholar 

  111. Chen Z, Shao S, He Y, Luo Q, Zheng M, Zheng M, Chen B, Wang M (2020) Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour Technol 302:122806. https://doi.org/10.1016/j.biortech.2020.122806

    Article  Google Scholar 

  112. Swain P, Tiwari A, Pandey A (2020) Enhanced lipid production in Tetraselmis sp. by two stage process optimization using simulated dairy wastewater as feedstock. Biomass Bioenergy 139:105643. https://doi.org/10.1016/j.biombioe.2020.105643

    Article  Google Scholar 

  113. Ji M-K, Yun H-S, Hwang BS, Kabra AN, Jeon B-H, Choi J (2016) Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol Eng 95:527–533. https://doi.org/10.1016/j.ecoleng.2016.06.017

    Article  Google Scholar 

  114. Mohammady NGE, El-Khatib KM, El-Galad MI, Abo El-Enin SA, Attia NK, El-Araby R, El Diwani G, Manning SR (2020) Preliminary study on the economic assessment of culturing Nannochloropsis sp. in Egypt for the production of biodiesel and high-value biochemicals. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00878-9

  115. Leong W-H, Lim J-W, Lam M-K, Uemura Y, Ho C-D, Ho Y-C (2018) Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. J Taiwan Inst Chem Eng 87:216–224. https://doi.org/10.1016/j.jtice.2018.03.038

    Article  Google Scholar 

  116. Mata SN, de Souza Santos T, Cardoso LG, Andrade BB, Duarte JH, Costa JAV, Oliveira de Souza C, Druzian JI (2020) Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: Production of carbohydrate-rich biomass. Bioresour Technol 311:123495. https://doi.org/10.1016/j.biortech.2020.123495

    Article  Google Scholar 

  117. Onay M (2018) Bioethanol production from Nannochloropsis gaditana in municipal wastewater. Energy Procedia 153:253–257. https://doi.org/10.1016/j.egypro.2018.10.032

    Article  Google Scholar 

  118. Haque F, Dutta A, Thimmanagari M, Chiang YW (2017) Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Saf Environ Prot 111:128–137. https://doi.org/10.1016/j.psep.2017.06.013

    Article  Google Scholar 

  119. Qu W, Loke Show P, Hasunuma T, Ho S-H (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. Bioresour Technol 305:123072. https://doi.org/10.1016/j.biortech.2020.123072

    Article  Google Scholar 

  120. Wang Y, Ho S-H, Cheng C-L, Nagarajan D, Guo W-Q, Lin C, Li S, Ren N, Chang J-S (2017) Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresour Technol 242:7–14. https://doi.org/10.1016/j.biortech.2017.03.122

    Article  Google Scholar 

  121. Pal P, Chew KW, Yen H-W, Lim JW, Lam MK, Show PL (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11(19):5424. https://doi.org/10.3390/su11195424

    Article  Google Scholar 

  122. Devi TE, Parthiban R (2020) Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production. Bioresour Technol 316:123943. https://doi.org/10.1016/j.biortech.2020.123943

    Article  Google Scholar 

  123. Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP (2018) Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour Technol 261:182–187. https://doi.org/10.1016/j.biortech.2018.04.029

    Article  Google Scholar 

  124. Cheng F, Jarvis JM, Yu J, Jena U, Nirmalakhandan N, Schaub TM, Brewer CE (2019) Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresour Technol 294:122184. https://doi.org/10.1016/j.biortech.2019.122184

    Article  Google Scholar 

  125. Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22(1):43–51. https://doi.org/10.1016/j.ejpe.2012.07.001

    Article  Google Scholar 

  126. Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00843-6

  127. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610. https://doi.org/10.1016/j.rser.2010.06.014

    Article  Google Scholar 

  128. Gayathri S, Rajasree SRR, Suman TY, Aranganathan L, Thriuganasambandam R, Narendrakumar G (2020) Induction of β, ε-carotene-3, 3′-diol (lutein) production in green algae Chlorella salina with airlift photobioreactor: interaction of different aeration and light-related strategies. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-019-00580-5

  129. Roberts GW, Fortier M-OP, Sturm BSM, Stagg-Williams SM (2013) Promising Pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy Fuel 27(2):857–867. https://doi.org/10.1021/ef3020603

    Article  Google Scholar 

  130. Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK (2018) Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod Process 110:60–84. https://doi.org/10.1016/j.fbp.2018.02.002

    Article  Google Scholar 

  131. Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148. https://doi.org/10.1016/j.rser.2013.06.02

    Article  Google Scholar 

  132. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

    Article  Google Scholar 

  133. Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88(10):3499–3506. https://doi.org/10.1016/j.apenergy.2010.12.056

    Article  Google Scholar 

  134. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  135. Ventura J-RS, Yang B, Lee Y-W, Lee K, Jahng D (2013) Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour Technol 137:302–310. https://doi.org/10.1016/j.biortech.2013.02.104

    Article  Google Scholar 

  136. Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, Kim HS (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25(1):109–118. https://doi.org/10.4014/jmb.1409.09019

    Article  Google Scholar 

  137. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015

    Article  Google Scholar 

  138. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177. https://doi.org/10.1002/elsc.200900003

    Article  Google Scholar 

  139. Umamaheswari J, Shanthakumar S (2019) Phycoremediation of paddy-soaked wastewater by indigenous microalgae in open and closed culture system. J Environ Manag 243:435–443. https://doi.org/10.1016/j.jenvman.2019.05.023

    Article  Google Scholar 

  140. Ruangsomboon S, Dimak J, Jongput B, Wiwatanaratanabutr I, Kanyawongha P (2020) Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity. Sci Rep 10(1):2731. https://doi.org/10.1038/s41598-020-59645-5

    Article  Google Scholar 

  141. Eloka-Eboka AC, Inambao FL (2017) Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energy 195:1100–1111. https://doi.org/10.1016/j.apenergy.2017.03.071

    Article  Google Scholar 

  142. Cunha P, Pereira H, Costa M, Pereira J, Silva JT, Fernandes N, Varela J, Silva J, Simões M (2020) Nannochloropsis oceanica cultivation in pilot-scale raceway ponds—from design to cultivation. Appl Sci 10(5):1725. https://doi.org/10.3390/app10051725

    Article  Google Scholar 

  143. Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR (2020) Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation. Algal Res 45:101731. https://doi.org/10.1016/j.algal.2019.101731

    Article  Google Scholar 

  144. Fuentes J-L, Montero Z, Cuaresma M, Ruiz-Domínguez M-C, Mogedas B, Nores IG, González del Valle M, Vílchez C (2020) Outdoor large-scale cultivation of the acidophilic microalga Coccomyxa onubensis in a vertical close photobioreactor for lutein production. Processes 8(3):324. https://doi.org/10.3390/pr8030324

    Article  Google Scholar 

  145. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, Ho YC, Tao Y (2020) Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 11(1):61–69. https://doi.org/10.1080/21655979.2019.1704536

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by a grant (PCSED-001-18) from Ministry of Education, Kingdom of Saudi Arabia, under the Promising Center for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia and the startup fund for the construction of the double first-class project (No. 561119201), Lanzhou University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Jalalah or El-Sayed Salama.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaogang, H., Jalalah, M., Jingyuan, W. et al. Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conv. Bioref. 12, 1939–1958 (2022). https://doi.org/10.1007/s13399-020-01061-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01061-w

Keywords

Navigation