Skip to main content

Advertisement

Log in

Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present work, the effect of pyrolysis conditions on biochar yield obtained from Chlorella vulgaris was examined statistically and the pyrolysis kinetics was determined using a thermogravimetric analyzer. For the production of biochar from microalgae, pyrolysis was carried out at the temperatures of 300, 500, and 700 °C, with the heating rates of 5, 15, and 25 °C/min, retention time of 0, 15, and 30 min, and nitrogen flow rate of 100 ml/min. For the examination of pyrolysis kinetic parameters, dried microalga was heated up to 900 °C at four different heating values of 5, 10, 25, and 50 °C/min at a constant nitrogen flow rate of 40 ml/min. Optimum pyrolysis conditions and the most suitable pyrolysis kinetic model were determined for Chlorella vulgaris. According to the obtained results, it was seen that Chlorella vulgaris could be easily evaluated in thermal conversion processes. Also, these results provide valuable information for optimization of biochar production, and modeling and designing of new pyrolysis systems using microalgal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dincer I, Rosen MA (1999) Energy, environment and sustainable development. Appl Energy 64(1–4):427–440

    Google Scholar 

  2. Adelard L, Poulsen TG, Rakotoniaina V (2015) Biogas and methane yield in response to co-and separate digestion of biomass wastes. Waste Manage Res 33(1):55–62

    Google Scholar 

  3. Özçimen D (2013) An approach to the characterization of biochar and bio-oil. Renew Energy Sustain Future iConcept Press:41–58

  4. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378

    Google Scholar 

  5. Bach Q-V, Chen W-H (2017) A comprehensive study on pyrolysis kinetics of microalgal biomass. Energy Convers Manag 131:109–116

    Google Scholar 

  6. Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Proced Eng 105:763–768

    Google Scholar 

  7. Özçimen D, İnan B, Koçer AT, Reyimu Z (2016) Sustainable biorefinery design for algal biofuel production. In: Biofuels: production and future perspectives. CRC Press, pp 431–460

  8. Nautiyal P, Subramanian K, Dastidar M (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120:79–88

    Google Scholar 

  9. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229–239

    Google Scholar 

  10. Reyimu Z, Özçimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46

    Google Scholar 

  11. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Google Scholar 

  12. Kim Y-M, Lee HW, Kim S, Watanabe C, Park Y-K (2015) Non-isothermal pyrolysis of citrus unshiu peel. Bioenergy Res 8(1):431–439

    Google Scholar 

  13. Özyurtkan MH, Özçimen D, Meriçboyu AE (2008) Investigation of the carbonization behavior of hybrid poplar. Fuel Process Technol 89(9):858–863

    Google Scholar 

  14. Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar—production and properties. Bioresour Technol 102(2):1886–1891

    Google Scholar 

  15. Yanik J, Stahl R, Troeger N, Sinag A (2013) Pyrolysis of algal biomass. J Anal Appl Pyrolysis 103:134–141

    Google Scholar 

  16. Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71(2):855–863

    Google Scholar 

  17. Yang X, Wang X, Zhao B, Li Y (2014) Simulation model of pyrolysis biofuel yield based on algal components and pyrolysis kinetics. Bioenergy Res 7(4):1293–1304

    Google Scholar 

  18. Radhakumari M, Prakash DJ, Satyavathi B (2016) Pyrolysis characteristics and kinetics of algal biomass using tga analysis based on ICTAC recommendations. Biomass Convers Biorefin 6(2):189–195

    Google Scholar 

  19. Plis A, Lasek J, Skawińska A, Zuwała J (2015) Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. J Anal Appl Pyrolysis 115:166–174

    Google Scholar 

  20. Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80

    Google Scholar 

  21. Tekindal MA, Bayrak H, Ozkaya B, Genç Y (2012) Box-Behnken experimental design in factorial experiments: the importance of bread for nutrition and health. Turk J Field Crops 17(2):115–123

    Google Scholar 

  22. Brassard P, Godbout S, Raghavan V, Palacios JH, Grenier M, Zegan D (2017) The production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration. Energy 10(3):288

    Google Scholar 

  23. Koçer AT, Özçimen D (2018) Investigation of the biogas production potential from algal wastes. Waste Manag Res 36:1100–1105

    Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Google Scholar 

  25. Soxhlet F (1879) Die gewichtsaiialytische Bestimmung des Milchfettes; von. Polytechnology 232:461

    Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Google Scholar 

  27. García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4

    Google Scholar 

  28. Koçer AT, Mutlu B, Özçimen D (2016) Algal biochar production from macroalgal wastes. In: Eurasia 2016 Waste Management Symposium. pp 777–781

  29. Keattch CJ (1969) An introduction to thermogravimetry. Heyden. Co-operation with Sadtler Research Laboratories, Philadelphia

    Google Scholar 

  30. Shih YF (2009) Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci B Polym Phys 47(13):1231–1239

    Google Scholar 

  31. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Google Scholar 

  32. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886

    Google Scholar 

  33. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4(5):323–328

    Google Scholar 

  34. Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69

    Google Scholar 

  35. Özçimen D, İnan B, Akış S, Koçer AT (2015) Utilization alternatives of algal wastes for solid algal products. In: Algal biorefineries. Springer, pp 393–418

  36. Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10(2):e0118985

    Google Scholar 

  37. Gibbons G, Goad L, Goodwin T (1968) The identification of 28-isofucosterol in the marine green algae Enteromorpha intestinalis and Ulva lactuca. Phytochem 7(6):983–988

    Google Scholar 

  38. Karbowiak T, Ferret E, Debeaufort F, Voilley A, Cayot P (2011) Investigation of water transfer across thin layer biopolymer films by infrared spectroscopy. J Membr Sci 370(1–2):82–90

    Google Scholar 

  39. Ponnuswamy I, Madhavan S, Shabudeen S (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. Int J Bio-Sci Bio-Technol 5(2):17–25

    Google Scholar 

  40. Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol 64(2):1179–1186

    Google Scholar 

  41. Liu Y, He Z, Uchimiya M (2015) Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Mod Appl Sci 9(4):246

    Google Scholar 

  42. Major J, Steiner C, Downie A, Lehmann J (2012) Biochar effects on nutrient leaching. In: Biochar for environmental management. Routledge, pp 303–320

  43. Zhao S-X, Ta N, Wang X-D (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energy 10(9):1293

    Google Scholar 

  44. Apaydın-Varol E, Pütün AE (2012) Preparation and characterization of pyrolytic chars from different biomass samples. J Anal Appl Pyrolysis 98:29–36

    Google Scholar 

  45. Gülyurt MÖ, Özçimen D, Inan B  (2016) Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. Int J Mol Sci 17 (4):579

    Google Scholar 

  46. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101(21):8389–8395

    Google Scholar 

  47. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28(2):190–198

    Google Scholar 

  48. Katyal S, Thambimuthu K, Valix M (2003) Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy 28(5):713–725

    Google Scholar 

  49. Titiladunayo IF, McDonald AG, Fapetu OP (2012) Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3(3):311–318

    Google Scholar 

  50. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobio 54(5–6):309–320

    Google Scholar 

  51. Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72

    Google Scholar 

  52. Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Google Scholar 

  53. Karakaş C, Özçimen D, İnan B (2017) Potential use of olive stone biochar as a hydroponic growing medium. J Anal Appl Pyrolysis 125:17–23

    Google Scholar 

  54. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2012) Biochar production from freshwater algae by slow pyrolysis. Maejo Int J Sci Technol 6(2):186

    Google Scholar 

  55. Peng W, Wu Q, Tu P (2001) Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J Appl Phycol 13(1):5–12

    Google Scholar 

  56. Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273

    Google Scholar 

  57. Plis A, Lasek J, Skawińska A (2017) Kinetic analysis of the combustion process of Nannochloropsis gaditana microalgae based on thermogravimetric studies. J Anal Appl Pyrolysis 127:109–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Özçimen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçer, A.T., Mutlu, B. & Özçimen, D. Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass. Biomass Conv. Bioref. 10, 85–94 (2020). https://doi.org/10.1007/s13399-019-00411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00411-7

Keywords

Navigation