Skip to main content
Log in

Production of Micro-holes on Duplex Stainless Steel 2205 by Electrochemical Micromachining: A Grey-RSM Approach

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrochemical micromachining (ECMM) is a non-traditional micro-fabrication technology developed to produce complex geometries on very hard and electrically conducting surfaces. Typical applications of ECMM include aerospace components, medical devices and gas turbine blades. Duplex stainless steel 2205 (DSS 2205) is an exceptional corrosion-resistant iron alloy with a nearly identical volume of austenite and ferrite. In the present work, ECMM was employed to produce a series of through micro-holes on DSS 2205 sheet. Brass and copper tungsten alloys were used as two separate electrode materials for micro-hole making experimentations. Micro-hole making experimental trials were executed using L27 orthogonal array. The collective methods of grey-based response surface methodology and analysis of variance were attempted to recognize the critical variables influencing the output parameters. The impact of machining variables on material removal rate, surface roughness and overcut was investigated through response surface plots. The optimal parameter settings were validated by performing a confirmation test. Morphologies of the machined micro-holes were analysed by scanning electron microscopic images. 3D surface measurement tester was used to estimate the roughness of the surface adjacent to the micromachined holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Swain, A.K.; Sundaram, M.M.; Rajurkar, K.P.: Use of coated microtools in advanced manufacturing: an exploratory study in electrochemical machining (ECM) context. J. Manuf. Process. 14, 150–159 (2012)

    Article  Google Scholar 

  2. He, Q.; Jin, Z.; Jiang, G.; Shi, Y.: The investigation on electrochemical denatured layer of 304 stainless steel. Mater. Manuf. Process. 33, 1661–1666 (2018)

    Article  Google Scholar 

  3. Agrawal, S.; Agrawal, S.; Kumar Kasdekar, D.: Optimization of MRR and electrolyte coating thickness of ECM parameters using PCA based GRA. Mater. Today Proc. 5, 18956–18965 (2018)

    Article  Google Scholar 

  4. Ajith Arul Daniel, S.; Vijay Ananth, S.; Parthiban, A.; Sivaganesan, S.: Optimization of machining parameters in electro chemical machining of Al5059/SiC/MoS2 composites using Taguchi method. Mater. Today Proc. 21, 738–743 (2020)

    Article  Google Scholar 

  5. Jain, N.K.; Jain, V.K.: Optimization of electro-chemical machining process parameters using genetic algorithms. Mach. Sci. Technol. 11, 235–258 (2007)

    Article  Google Scholar 

  6. Pradeep, N.; ShanmugaSundaram, K.; Pradeep Kumar, M.: Multi-response optimization of electrochemical micromachining parameters for SS304 using polymer graphite electrode with NaNO3 electrolyte based on TOPSIS technique. J. Braz. Soc. Mech. Sci. Eng. 41, 1–10 (2019)

    Article  Google Scholar 

  7. Kalaimathi, M.; Venkatachalam, G.; Makhijani, N.; Agrawal, A.; Sivakumarz, M.: Investigations on machining of monel 400 alloys using electrochemical machining with sodium nitrate as electrolyte. Appl. Mech. Mater. 592–594, 467–472 (2014)

    Article  Google Scholar 

  8. Patel, D.S.; Sharma, V.; Jain, V.K.; Ramkumar, J.: Reducing overcut in electrochemical micromachining process by altering the energy of voltage pulse using sinusoidal and triangular waveform. Int. J. Mach. Tools Manuf. 151, 103526 (2020)

    Article  Google Scholar 

  9. Amalnik, M.S.; McGeough, J.A.: Intelligent concurrent manufacturability evaluation of design for electrochemical machining. J. Mater. Process. Technol. 61, 130–139 (1996)

    Article  Google Scholar 

  10. Geethapriyan, T.; Muthuramalingam, T.; Kalaichelvan, K.: Influence of Process Parameters on Machinability of Inconel 718 by Electrochemical Micromachining Process using TOPSIS Technique. Arab. J. Sci. Eng. 44, 7945–7955 (2019)

    Article  Google Scholar 

  11. Távara, S.A.; Chapetti, M.D.; Otegui, J.L.; Manfredi, C.: Influence of nickel on the susceptibility to corrosion fatigue of duplex stainless steel welds. Int. J. Fatigue 23, 619–626 (2001)

    Article  Google Scholar 

  12. Araby, S.; Zaied, R.; Haridy, S.; Kaytbay, S.: Grooves into cylindrical shapes by wire electrochemical machining. Int. J. Adv. Manuf. Technol. 90, 445–455 (2017)

    Article  Google Scholar 

  13. Zhang, H.; Liu, S.; Yue, W.; Xiao, H.; Zhang, P.: Experimental study of surface characteristic in electrochemical machining of 35CrMo steel. Metals (Basel) 8, 1–20 (2018)

    Google Scholar 

  14. Demirtas, H.; Yilmaz, O.; Kanber, B.: Experimental investigation of the effects of dedicated electrochemical machining parameters on freeform surface machining. J. Manuf. Process. 43, 244–252 (2019)

    Article  Google Scholar 

  15. Qu, N.S.; Fang, X.L.; Zhang, Y.D.; Zhu, D.: Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. Int. J. Adv. Manuf. Technol. 69, 2703–2709 (2013)

    Article  Google Scholar 

  16. Xu, Z.; Wang, Y.: Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chin. J. Aeronaut. (2019). https://doi.org/10.1016/j.cja.2019.09.016

    Article  Google Scholar 

  17. Burger, M.; Koll, L.; Werner, E.A.; Platz, A.: Electrochemical machining characteristics and resulting surface quality of the nickel-base single-crystalline material LEK94. J. Manuf. Process. 14, 62–70 (2012)

    Article  Google Scholar 

  18. Singh, T.; Dvivedi, A.: Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int. J. Mach. Tools Manuf. 105, 1–13 (2016)

    Article  Google Scholar 

  19. Sohrabpoor, H.; Khanghah, S.P.; Shahraki, S.; Teimouri, R.: Multi-objective optimization of electrochemical machining process. Int. J. Adv. Manuf. Technol. 82, 1683–1692 (2016)

    Article  Google Scholar 

  20. Qi, K.; et al.: Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints. J. Mater. Eng. Perform. 28, 287–295 (2019)

    Article  Google Scholar 

  21. Palani, S.; Lakshmanan, P.; Kaliyamurthy, R.: Experimental investigations of electrochemical micromachining of nickel aluminum bronze alloy. Mater. Manuf. Process. (2020). https://doi.org/10.1080/10426914.2020.1813888

    Article  Google Scholar 

  22. Kumarasamy, G.; Lakshmanan, P.; Thangamani, G.: Electrochemical micromachining of hastelloy C276 by different electrolyte solutions. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-05032-1

    Article  Google Scholar 

  23. Teimouri, R.; Sohrabpoor, H.: Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process. Front. Mech. Eng. 8, 429–442 (2013)

    Article  Google Scholar 

  24. Dhuria, G.K.; Singh, R.; Batish, A.: Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V. J. Braz. Soc. Mech. Sci. Eng. 39, 2619–2634 (2017)

    Article  Google Scholar 

  25. Saxena, K.K.; Qian, J.; Reynaerts, D.: A review on process capabilities of electrochemical micromachining and its hybrid variants. Int. J. Mach. Tools Manuf. 127, 28–56 (2018)

    Article  Google Scholar 

  26. Holstein, N.; Krauss, W.; Konys, J.: Development of novel tungsten processing technologies for electro-chemical machining (ECM) of plasma facing components. Fusion Eng. Des. 86, 1611–1615 (2011)

    Article  Google Scholar 

  27. Agarwal, S.; Dandge, S.S.; Chakraborty, S.: Development of association rules to study the parametric influences in non-traditional machining processes. Sadhana—Acad. Proc. Eng. Sci. 44, 1–17 (2019)

    Google Scholar 

  28. Mi, D.; Natsu, W.: Design of ECM tool electrode with controlled conductive area ratio for holes with complex internal features. Precis. Eng. 47, 54–61 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poovazhagan Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, C., Lakshmanan, P. & Amith, S.C. Production of Micro-holes on Duplex Stainless Steel 2205 by Electrochemical Micromachining: A Grey-RSM Approach. Arab J Sci Eng 46, 2769–2782 (2021). https://doi.org/10.1007/s13369-020-05277-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05277-w

Keywords

Navigation