Skip to main content

Advertisement

Log in

Gene–environment interactions between ERCC2, ERCC3, XRCC1 and cadmium exposure in nasal polyposis disease

  • Human Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Gene–environment interactions have long been known to play an important role in complex disease aetiology, such as nasal polyposis (NP). The present study supports the concept that DNA repair gene polymorphisms play critical roles in modifying individual susceptibility to environmental diseases. In fact, we investigated the role of polymorphisms in DNA repair genes and cadmium as risk factors for Tunisian patients with NP. To the best of our knowledge, this is the first report on the impact of combined effects of cadmium and ERCC3 7122 A>G (rs4150407), ERCC2 Lys751Gln (rs13181) and XRCC1 Arg399Gln (rs25487) genes in the susceptibility to NP disease. Significant associations between the risk of developing NP disease and ERCC2 [odds ratio (OR) = 2.0, 95 % confidence interval (CI) = 1.1–3.7, p = 0.023] and ERCC3 (OR = 2.2, 95 % CI = 1.2–4.1, p = 0.013) genotypes polymorphisms were observed. Blood concentrations of Cd in NP patients (2.2 μg/L) were significantly higher than those of controls (0.5 μg/L). A significant interaction between ERCC3 (7122 A>G) polymorphism and blood-Cd levels (for the median of blood-Cd levels: OR = 3.8, 95 % CI = 1.3–10.8, p = 0.014 and for the 75th percentiles of blood-Cd levels: OR = 2.7, 95 % CI = 1.1–7.2, p = 0.041) was found in association with the risk of NP disease. In addition, when we stratified ERCC2, ERCC3 and XRCC1 polymorphism genotypes by the median and 75th percentiles of blood-Cd levels, we found also significant interactions between ERCC2 (Lys751Gln) and ERCC3 (7122 A>G) genotypes polymorphism and this metal in association with NP disease. However, no interaction was found between XRCC1 (Arg399Gln) polymorphism genotypes and Cd in association with NP disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agency for Toxic Substances & Disease Registry (ATSDR) (2012) Toxicological profile for cadmium. Public Health Service. ATSDR Toxic Substances Portal—Cadmium. Available online at: http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=48&tid=15. Accessed 1st September 2012

  • Aimola P, Carmignani M, Volpe AR et al (2012) Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS One 7:e33647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Bakheet SA, Attafi IM, Maayah ZH et al (2013) Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environ Pollut 181:226–232

    Article  CAS  PubMed  Google Scholar 

  • Alaya-Ltifi L, Chokri MA, Selmi S (2012) Breeding performance of passerines in a polluted oasis habitat in southern Tunisia. Ecotoxicol Environ Saf 79:170–175

    Article  CAS  PubMed  Google Scholar 

  • Anetor JI (2012) Rising environmental cadmium levels in developing countries: threat to genome stability and health. Niger J Physiol Sci 27(2):103–115

    CAS  PubMed  Google Scholar 

  • Batty DP, Wood RD (2000) Damage recognition in nucleotide excision repair of DNA. Gene 241(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environmental Health Perspectives 115:1454–1459

  • Bernstein JM (2001) The molecular biology of nasal polyposis. Curr Allergy Asthma Rep 1:262–267

    Article  CAS  PubMed  Google Scholar 

  • Bialkowski K, Bialkowska A, Kasprzak KS (1999) Cadmium(II), unlike nickel(II), inhibits 8-oxo-dGTPase activity and increases 8-oxo-dG level in DNA of the rat testis, a target organ for cadmium(II) carcinogenesis. Carcinogenesis 20:1621–1624

    Article  CAS  PubMed  Google Scholar 

  • Chi XX, Liu YY, Shi SN, Cong Z, Liang YQ, Zhang HJ (2015) XRCC1 and XPD genetic polymorphisms and susceptibility to age-related cataract: a meta-analysis. Mol Vis 21:335–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Dally H, Hartwig A (1997) Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis 18:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Shen HM, Ong CN (2001) Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes. Mol Cell Biochem 222(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Mar W, Cho MH (2002) Cadmium affects genes involved in growth regulation during two-stage transformation of Balb/3T3 cells. Toxicology 177(2–3):253–265

    Article  CAS  PubMed  Google Scholar 

  • Fatur T, Lah TT, Filipic M (2003) Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells. Mutat Res 529:109–116

    Article  CAS  PubMed  Google Scholar 

  • Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res 733:69–77

    Article  PubMed  Google Scholar 

  • Filipic M, Hei TK (2004) Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage. Mutat Res 546:81–91

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Aguilera A, Gellert M et al (2006) DNA repair: from molecular mechanism to human disease. DNA Repair (Amst) 5(8):986–996

    Article  CAS  Google Scholar 

  • Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments. Chem Erde 72:127–139

    Article  CAS  Google Scholar 

  • Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 213:282–290

    Article  CAS  PubMed  Google Scholar 

  • Gil F, Capitán-Vallvey LF, De Santiago E et al (2006) Heavy metal concentrations in the general population of Andalusia, South of Spain: a comparison with the population within the area of influence of Aznalcóllar mine spill (SW Spain). Sci Total Environ 372(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Speit G (1996) Effect of arsenic and cadmium on the persistence of mutagen-induced DNA lesions in human cells. Environ Mol Mutagen 27:98–104

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A (2010) Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals 23:951–960

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A, Schwerdtle T (2002) Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127(1–3):47–54

    Article  CAS  PubMed  Google Scholar 

  • Hodgson ME, Poole C, Olshan AF, North KE, Zeng D, Millikan RC (2010) Smoking and selected DNA repair gene polymorphisms in controls: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 19(12):3055–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson ME, Olshan AF, North KE et al (2012) The case-only independence assumption: associations between genetic polymorphisms and smoking among controls in two population-based studies. Int J Mol Epidemiol Genet 3(4):333–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeijmakers JH (2001) DNA repair mechanisms. Maturitas 38(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Jin YH, Clark AB, Slebos RJ et al (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlifi R, Kallel I, Hammami B, Hamza-Chaffai A, Rebai A (2014) DNA repair gene polymorphisms and risk of head and neck cancer in the Tunisian population. J Oral Pathol Med 43(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Khlifi R, Olmedo P, Gil F, Chakroun A, Hamza-Chaffai A (2015a) Association between blood arsenic levels and nasal polyposis disease risk in the Tunisian population. Environ Sci Pollut Res Int 22(18):14136–14143

    Article  CAS  PubMed  Google Scholar 

  • Khlifi R, Olmedo P, Gil F, Hammami B, Hamza-Chaffai A (2015b) Cadmium and nickel in blood of Tunisian population and risk of nasosinusal polyposis disease. Environ Sci Pollut Res Int 22(5):3586–3593

    Article  CAS  PubMed  Google Scholar 

  • Khlifi R, Olmedo P, Gil F, Chakroun A, Hammami B, Hamza-Chaffai A (2015c) Heavy metals in normal mucosa and nasal polyp tissues from Tunisian patients. Environ Sci Pollut Res Int 22(1):463–471

    Article  CAS  PubMed  Google Scholar 

  • Lei YX, Lu Q, Shao C, He CC, Lei ZN, Lian YY (2015) Expression profiles of DNA repair-related genes in rat target organs under subchronic cadmium exposure. Genet Mol Res 14(1):515–524

    Article  CAS  PubMed  Google Scholar 

  • Leibeling D, Laspe P, Emmert S (2006) Nucleotide excision repair and cancer. J Mol Histol 37:225–238

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Li J, Gao Q, Yu W, Yang Q, Li X (2014) Laryngeal cancer risk and common single nucleotide polymorphisms in nucleotide excision repair pathway genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5 and XPA. Gene 542(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Manca D, Ricard AC, Trottier B, Chevalier G (1991) Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 67:303–323

    Article  CAS  PubMed  Google Scholar 

  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10

    Article  CAS  PubMed  Google Scholar 

  • Mfuna-Endam L, Zhang Y, Desrosiers MY (2011) Genetics of rhinosinusitis. Curr Allergy Asthma Rep 11:236–246

    Article  CAS  PubMed  Google Scholar 

  • Nordberg G, Jin T, Bernard A et al (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481

    Article  PubMed  Google Scholar 

  • Olmedo P, Pla A, Hernández AF et al (2010) Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 659(1–2):60–67

    Article  CAS  PubMed  Google Scholar 

  • Potts RJ, Bespalov IA, Wallace SS, Melamede RJ, Hart BA (2001) Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein. Toxicology 161:25–38

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399

    Article  CAS  PubMed  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  • Schöpfer J, Drasch G, Schrauzer GN (2010) Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 134:180–187

    Article  PubMed  Google Scholar 

  • Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LHF, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23:432–442

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Hung RJ, Brennan P et al (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case–control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12:1234–1240

    CAS  PubMed  Google Scholar 

  • Steel J (1993) Occupational rhinitis (Prescribed Disease D4): occupational causation. University of Newcastle-upon-Tyne, Newcastle-upon-Tyne

  • Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW (2006) XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 15(12):2384–2390

    Article  CAS  PubMed  Google Scholar 

  • Swaddiwudhipong W, Mahasakpan P, Funkhiew T, Limpatanachote P (2010) Changes in cadmium exposure among persons living in cadmium-contaminated areas in northwestern Thailand: a five-year follow-up. J Med Assoc Thai 93:1217–1222

    PubMed  Google Scholar 

  • Tudek B (2007) Base excision repair modulation as a risk factor for human cancers. Mol Aspects Med 28(3–4):258–275

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Verde Z, Reinoso L, Chicharro LM et al (2015) Are SNP-smoking association studies needed in controls? DNA repair gene polymorphisms and smoking intensity. PLoS One 10(5):e0129374

    Article  PubMed  PubMed Central  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dong Z, Zhu DD, Guan B (2006) Expression profile of immune-associated genes in nasal polyps. Ann Otol Rhinol Laryngol 115:450–456

    Article  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Welch AR, Birchall JP, Stafford FW (1995) Occupational rhinitis—possible mechanisms of pathogenesis. J Laryngol Otol 109:104–107

    Article  CAS  PubMed  Google Scholar 

  • Xing C, Chen Q, Li G et al (2013) Microsomal epoxide hydrolase (EPHX1) polymorphisms are associated with aberrant promoter methylation of ERCC3 and hematotoxicity in benzene-exposed workers. Environ Mol Mutagen 54(6):397–405

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Chiu SJ, Lin KA, Lin LY (2004) Effect of cadmium on cell cycle progression in Chinese hamster ovary cells. Chem Biol Interact 149(2–3):125–136

    Article  CAS  PubMed  Google Scholar 

  • Zarros A, Skandali N, Al-Humadi H, Liapi C (2008) Cadmium (Cd) as a carcinogenetic factor and its participation in the induction of lung cancer. Pneumon 21:172–177

    Google Scholar 

  • Zhou ZH, Lei YX, Wang CX (2012) Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci 125:412–417

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang C, Liu H, Huang Q, Wang M, Lei Y (2013) Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells. Int J Med Sci 10(11):1485–1496

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Higher Education of Tunisia. The authors thank the Department of Otorhinolaryngology, Habib Bourguiba Hospital, Sfax, Tunisia, for the recruitment of patients. They thank all members of the Department of Otorhinolaryngology and especially Dr. Adel Chakroun and Dr. Amine Chakroun for their efforts and assistance in recruiting patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Khlifi.

Ethics declarations

Conflict of interest

The authors communicated no conflict of interests.

Additional information

Communicated by: Michal Witt

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlifi, R., Olmedo, P., Gil, F. et al. Gene–environment interactions between ERCC2, ERCC3, XRCC1 and cadmium exposure in nasal polyposis disease. J Appl Genetics 58, 221–229 (2017). https://doi.org/10.1007/s13353-016-0375-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-016-0375-0

Keywords

Navigation