Skip to main content

Advertisement

Log in

Elevated levels of vascular endothelial growth factor in adults with severe dengue infection

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

The immune pathogenesis of dengue involves antibody production, B cell and T cell response and various pro-inflammatory and anti-inflammatory cytokines. VEGF, a potent permeability enhancing cytokine, is thought to play a pivotal role in mediating plasma leakage in DHF. It is a member of growing family of related proteins that includes VEGF B, VEGF C, VEGF D and placental growth factor. It promotes angiogenesis and vascular integrity. In addition to its role in promoting endothelial permeability & proliferation, it may contribute to inflammation and coagulation. This study was undertaken to investigate the role of VEGF in the patients with dengue infection. Sera were collected from 106 patients with various grades of dengue illness and 40 healthy controls and tested for VEGF levels using commercial ELISA kits. Viral serotypes were detected using specific primers. The results showed very low levels of VEGF (3.493 ± 1.982 pg/ml) in healthy controls. Levels of VEGF were higher in patients with severe dengue (428.170 ± 224.61 pg/ml) as compared to patients with non severe dengue with and without warning signs (290.407 ± 167.17 pg/ml). Significant correlation (p < 0.001) was found between raised VEGF levels and thrombocytopenia and raised haematocrit levels. The VEGF profile patterns discovered between the different phases of illness indicate an essential role in dengue pathogenesis and with further studies may serve as predictive markers for progression of dengue fever to severe dengue infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2002;7(1):76–85.

    Article  Google Scholar 

  2. Chakravarti A, Kumaria R. Circulating levels of tumour necrosis factor-α & interferon-γ in patients with dengue & dengue haemorrhagic fever during an outbreak. Indian J Med Res. 2006;123:25–30.

    CAS  PubMed  Google Scholar 

  3. Clyde K, Jennifer LK, Eva H. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80(3):11418–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Furuta T, Murao LA, Lan M, Hug NT, Huong VT. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. PloS Negl Trop Dis. 2012;6(2):e1505. doi:10.1371/journal.pntd.0001505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gibbons RV, Vaughn DW. Dengue: an escalating problem. BMJ. 2002;324(7353):1563–6.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Grist NR. Aedes albopictus: the tyre—travelling tiger. J Infect. 1993;27:1–4.

    Article  CAS  PubMed  Google Scholar 

  7. Grist NR, Burgess NRH. Aedes and dengue. Lancet. 1994;343(8895):477.

    Article  CAS  PubMed  Google Scholar 

  8. Gubler DJ. The global pandemic of dengue/dengue haemorrhagic fever: current status & prospects for the future. Ann Acad Med. 1998;27(2):227–34.

    CAS  Google Scholar 

  9. Gubler DJ. Dengue and dengue haemorrhagic fever. Clin Microbiol Rev. 1998;11(3):480–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Gubler DJ, Clark GG. Community involvement in the control of Aedes aegypti. Acta Trop. 1996;61(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  11. Guzmán MG, Kourí G, Valdés L, Bravo J, Vázquez S, Halstead SB. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica. 2002;11(4):223–7.

    Article  PubMed  Google Scholar 

  12. Halstead SB. Observations related to pathogenesis of dengue haemorrhagic fever VI. Hypothesis and discussion. Yale J Biol Med. 1970;42:350–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–81.

    Article  CAS  PubMed  Google Scholar 

  14. Halstead SB. Antibody, macrophages, dengue virus infection, shock and haemorrhage: a pathogenic cascade. Clin Infect Dis. 1989;11(4):s830–9.

    Article  Google Scholar 

  15. Lanciotti R, Calisher C, Gubler DJ, Chang G, Vorndam V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase–polymerase chain reaction. J Clin Microbiol. 1992;30:545–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Loke H, Bethell DB, Phuong CXT, Dung M, Schneider J, White NJ, Hill AV. Strong HLA class I—restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis. 2001;184(11):1369–73.

    Article  CAS  PubMed  Google Scholar 

  17. Perez AB, Sierra B, Garcia G, Aguirre E, Babel N, Alvarez M, Guzman MG. Tumor necrosis factor-alpha, transforming growth factor-β1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol. 2010;71(11):1135–40.

    Article  CAS  PubMed  Google Scholar 

  18. Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 & 2 in nature. Virology. 1990;174(2):479–93.

    Article  CAS  PubMed  Google Scholar 

  19. Sabin AB. Research on dengue during world war II. Am J Trop Med Hyg. 1952;1(1):30–50.

    CAS  PubMed  Google Scholar 

  20. Sathupan P, Khongphattanayothin A, Srisai J, Srikaen K, Poovorawan Y. The role of vascular endothelial growth factor leading to vascular leakage in children with dengue virus infection. Ann Trop Paediatr. 2007;27(3):179–84.

    Article  PubMed  Google Scholar 

  21. Sawano A, Iwai S, Sakurai Y, Ito M, Shitare K et al. VEGFR1 is a novel cell surface marker for the lineage of monocyte-macrophage in humans. Blood 2001;97:785–91.

  22. Seet R, Chow A, Quekamy ML, Chan YH. Relationship between circulating vascular endothelial growth factor and its soluble receptors in adults with dengue virus infection: a case control study. Int J Infect Dis. 2009;13(5):248–53.

    Article  Google Scholar 

  23. Srikiatkhachorn C, Kharon A, Endy TB. Virus-induced decline in soluble vascular endothelium growth factor receptor 2 is associated with plasma leakage in DHF. J Virol. 2007;81(4):1592–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tseng C, Lohw S, Teng H. Elevated levels of plasma VEGF in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol. 2005;43:99–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Chakravarti.

Additional information

Preeti Thakur, Anita Chakravarti, Sunita Aggarwal, Beena Uppal and Preena Bhalla have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Chakravarti, A., Aggarwal, S. et al. Elevated levels of vascular endothelial growth factor in adults with severe dengue infection. VirusDis. 27, 48–54 (2016). https://doi.org/10.1007/s13337-015-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-015-0296-2

Keywords

Navigation