Skip to main content

Advertisement

Log in

Invasive alien plant species dynamics in the Himalayan region under climate change

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Climate change will impact the dynamics of invasive alien plant species (IAPS). However, the ability of IAPS under changing climate to invade mountain ecosystems, particularly the Himalayan region, is less known. This study investigates the current and future habitat of five IAPS of the Himalayan region using MaxEnt and two representative concentration pathways (RCPs). Two invasive species, Ageratum conyzoides and Parthenium hysterophorus, will lose overall suitable area by 2070, while Ageratina adenophora, Chromolaena odorata and Lantana camara will gain suitable areas and all of them will retain most of the current habitat as stable. The southern Himalayan foothills will mostly conserve species ecological niches, while suitability of all the five species will decrease with increasing elevation. Such invasion dynamics in the Himalayan region could have impacts on numerous ecosystems and their biota, ecosystem services and human well-being. Trans-boundary response strategies suitable to the local context of the region could buffer some of the likely invasion impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari, D., R. Tiwary, and S.K. Barik. 2015. Modelling hotspots for invasive alien plants in India. PLoS ONE 10: e0134665.

    Article  CAS  Google Scholar 

  • Alexander, J.M., J.J. Lembrechts, L.A. Cavieres, C. Daehler, S. Haider, C. Kueffer, G. Liu, K. McDougall, et al. 2016. Plant invasion into mountains and alpine ecosystems: Current status and future challenges. Alpine Botany 126: 89–103.

    Article  Google Scholar 

  • Alexander, J.M., C. Kueffer, C.C. Daehler, P.J. Edwards, A. Pauchard, T. Seipel, and MIREN Consortium. 2011. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences 108: 656–667.

    Article  Google Scholar 

  • Andersen, K.M., B.J. Naylor, B.A. Endress, and C.G. Parks. 2015. Contrasting distribution patterns of invasive and naturalized non-native species along environmental gradients in a semi-arid montane ecosystem. Applied Vegetation Science 18: 683–693.

    Article  Google Scholar 

  • Aryal, A., U.B. Shrestha, W. Ji, S.B. Ale, S. Shreshta, T. Ingty, T. Maraseni, G. Cokcfield, and D. Raubenheimer. 2016. Predicting the distribution of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecology and Evolution 6: 4065–4075.

    Article  Google Scholar 

  • Aryal, A., K.P. Acharya, U.B. Shrestha, M. Dhakal, D. Raubenhiemer, and W. Wright. 2017. Global lessons from successful rhinoceros conservation in Nepal. Conservation Biology 31: 1494–1497.

    Article  Google Scholar 

  • Averett, J.P., B. McCune, C.G. Parks, B.J. Naylor, T. DelCurto, and R. Mata-Gonzalez. 2016. Non-native plant invasion along elevation and canopy closure gradients in a middle rocky Mountain ecosystem. PLoS ONE 11: e0147826.

    Article  CAS  Google Scholar 

  • Baldwin, R.A. 2009. Use of maximum entropy modelling in wildlife research. Entropy 11: 854–866.

    Article  Google Scholar 

  • Barni, E., G. Bacaro, S. Falzoi, F. Spanna, and C. Siniscalco. 2012. Establishing climatic constraints shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecology 213: 757–767.

    Article  Google Scholar 

  • Beaumont, L.J., R.V. Gallagher, W. Thuiller, P.O. Downey, M.R. Leishman, and L. Hughes. 2009. Different climate envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distribution 15: 409–420.

    Article  Google Scholar 

  • Becker, T., H. Dietz, R. Billeter, H. Buschmann, and P.J. Edwards. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Perspective in Plant Ecology, Evolution and Systematics 7: 173–183.

    Article  Google Scholar 

  • Benito, B., J. Lorite, and J. Penas. 2011. Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change 108: 471–483.

    Article  Google Scholar 

  • Bezeng, B.S., I. Morales-Castilla, M. van der Bank, K. Yessoufou, B.H. Daru, and T.J. Davies. 2017. Climate change may reduce the spread of non-native species. Ecosphere 8: e01694.

    Article  Google Scholar 

  • Bhattarai, K.R., E. Inger, and S.C.S. Maren. 2014. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. Journal of Mountain Science 11: 688–696.

    Article  Google Scholar 

  • Chen, C., Q.H. Wang, J.Y. Wu, D. Huang, W.H. Zhang, N. Zhao, X.F. Li, and L.X. Wang. 2017. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodiversity and Conservation 26: 353–381.

    Article  Google Scholar 

  • Chettri, N., B. Shakya, R. Thapa, and E. Sharma. 2008. Status of a protected area system in the Hindu Kush-Himalayas: An analysis of PA coverage. The International Journal of Biodiversity Science and Management 4: 164–178.

    Article  Google Scholar 

  • Clements, D.R., and A. Ditommaso. 2011. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research 51: 227–240.

    Article  Google Scholar 

  • Cruz-Cardenas, G., L. Lopez-Malta, J.L. Villasenor, and E. Ortiz. 2014. Potential species distribution modelling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189–199.

    Article  Google Scholar 

  • Daehler, C.C. 2003. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology and Systematics 34: 183–211.

    Article  Google Scholar 

  • Dhar, P.A., and Z.A. Reshi. 2015. Do alien plant invasions cause biotic homogenization of terrestrial ecosystems in the Kashmir Valley, India? Tropical Ecology 56: 111–123.

    Google Scholar 

  • Dromann, C.F., J. Elith, S. Bahcer, C. Buchmann, G. Carl, G. Carre, J.R.G. Marquez, B. Gruber, et al. 2012. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • Duan, R.Y., X.Q. Kong, M.Y. Huang, W.Y. Fan, and Z.G. Wang. 2014. The predictive performance and stability of six species distribution models. PLoS ONE 9: e112764.

    Article  CAS  Google Scholar 

  • Early, R.B.A., J.S. Bradley, J.J. Dukes, J.D. Lawler, D.M. Olden, P. Blumenthal, E.D.Grosholz Gonzalez, et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communication 7: 12485.

    Article  CAS  Google Scholar 

  • Elith, J. 2000. Quantitative methods for modelling species habitat: Comparative performance and an application to Australian plants. In Quantitative methods for conservation biology, ed. S. Ferson, and M. Burgman, 39–58. New York: Springer.

    Chapter  Google Scholar 

  • Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee, and C.J. Yates. 2011. A statistical explanation of Maxent for ecologist. Diversity and Distribution 17: 43–57.

    Article  Google Scholar 

  • Evangelista, P.H., S. Kumar, T.J. Stohlgren, C.S. Jarnevich, A.W. Crall, J.B. Norman, and D.T. Barnett. 2008. Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distribution 14: 808–817.

    Article  Google Scholar 

  • Fandohan, A.B., A.M. Oduor, A.I. Sodé, L. Wu, A. Cuni-Sanchez, E. Assédé, and G.N. Gouwakinnou. 2015. Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability 1: 20.

    Article  Google Scholar 

  • Funk, J.L., V. Matzek, M. Bernhardt, and D. Johnson. 2014. Broadening the case for invasive species management to include impacts on ecosystem services. BioScience 64: 58–63.

    Article  Google Scholar 

  • Goncalves, E., I. Herrera, M. Duarte, R.O. Bustamante, M. Lampo, G. Velasquez, G.P. Sharma, and S. Garcia-Rangel. 2014. Global invasion of Lantana camara: Has the climatic niche been conserved across continents? PLoS ONE 9: e111468.

    Article  CAS  Google Scholar 

  • Guo, H., S.J. Mazer, X. Xu, X. Luo, K. Huang, and X. Xu. 2017. Biological invasions in nature reserves in China. In Biological invasions and its management in China, vol. 11, ed. F. Wan, et al., 125–147., Invading nature—Springer series in invasion ecology New York: Springer.

    Chapter  Google Scholar 

  • Grice, A.C. 2006. The impacts of invasive plant species on the biodiversity of Australian rangelands. The Rangeland Journal 28: 27–35.

    Article  Google Scholar 

  • Haider, S., J. Alexander, H. Dietz, L. Trepl, P.J. Edwards, and C. Kueffer. 2010. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along altitudinal gradient. Biological Invasion 12: 4003–4018.

    Article  Google Scholar 

  • Hellmann, J.J., J.E. Byers, B.G. Bierwagen, and J.S. Dukes. 2008. Five potential impacts of climate change for invasive species. Conservation Biology 22: 534–543.

    Article  Google Scholar 

  • Higgins, S.I., and D.M. Richardson. 2014. Invasive plants have broader physiological niches. Proceeding of the National Academy of Sciences 111: 10610–10614.

    Article  CAS  Google Scholar 

  • IPCC. 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jauni, M., S. Gripenberg, and S. Ramula. 2015. Non-native plant species benefits from disturbance: A meta-analysis. Oikos 124: 122–129.

    Article  Google Scholar 

  • Jayanarayanan, S., R. Krishnan, A.B. Shrestha, R. Rajbhandari, and R.Y. Guo. 2017. Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Advances in Climate Change Research 8: 185–198.

    Article  Google Scholar 

  • Jones, C.C. 2012. Challenges in predicting the future distribution of invasive plant species. Forest Ecology and Management 284: 69–77.

    Article  Google Scholar 

  • Joshi C., J. de Leeuw, and A.K. Skidmore. 2006. Upscaling species invasion patterns from local to regional for forest ecosystem management. ISPRS mid-term symposium: “Remote sensing: from pixel to processes”, Commission VI, WG VI/7; 8-11 May 2006, the Netherlands.

  • Kannan, R., C.M. Shackleton, and R.U. Shaanker. 2013. Playing with the forest: invasive alien plants, policy and protected areas in India. Current Science 104: 1159–1165.

    Google Scholar 

  • Knutti, R., and J. Sedlacek. 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3: 369–373.

    Article  Google Scholar 

  • Lamsal, P., L. Kumar, F. Shabani, and K. Atreya. 2017. The greening of the Himalaya and Tibetan Plateau under climate change. Global and Planetary Change 159: 77–92.

    Article  Google Scholar 

  • Lembrechts, J.J., A. Milbau, and I. Nijs. 2014. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9: e89664.

    Article  CAS  Google Scholar 

  • Lin, W., G. Zhou, X. Cheng, and R. Xu. 2007. Fast economic development accelarates biological invasion in China. PLoS ONE 11: e1208.

    Article  Google Scholar 

  • Liu, C., P.M. Berry, T.P. Dawson, and R.G. Pearson. 2005a. Selecting thresholds of occurrence in the prediction of species distribution. Ecograhpy 28: 385–393.

    Article  Google Scholar 

  • Liu, C., M. White, and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence only data. Journal of Biogeography 40: 778–789.

    Article  Google Scholar 

  • Liu, J., S.C. Liang, F.H. Liu, R.Q. Wang, and M. Dong. 2005b. Invasive alien plant species in China: Regional distribution pattern. Diversity and Distribution 11: 341–347.

    Article  Google Scholar 

  • Mack, R.N., D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout, and F.A. Bazzaz. 2000. Biotic invasion: Causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Mainali, K.P., D.L. Warren, K. Dhileepan, A. McConnachie, L. Strathie, G. Hassan, D. Karki, B.B. Shrestha, and C. Parmesan. 2015. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution methods. Global Change Biology 21: 4464–4480.

    Article  Google Scholar 

  • Mainka, S.A., and G.W. Howard. 2010. Climate change and invasive species: Double jeopardy. Integrative Zoology 5: 102–111.

    Article  Google Scholar 

  • Marini, L., A. Battisti, E. Bona, G. Federici, F. Martini, M. Pautasso, and P.E. Hulme. 2012. Alien and native plant life-forms respond differently to human and climate pressures. Global Ecology and Biogeography 21: 534–544.

    Article  Google Scholar 

  • Marini, L., K.J. Gaston, F. Prosser, and P.E. Hulme. 2009. Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradient. Global Ecology and Biogeography 18: 652–661.

    Article  Google Scholar 

  • Maron, J.L., M. Vila, R. Bommarco, S. Elmendorf, and P. Beardsley. 2004. Rapid Evolution of an Invasive Plant. Ecological Monographs 72: 261–280.

    Article  Google Scholar 

  • Masters, G., and L. Norgrove. 2010. Climate change and invasive alien species. CABI Working Paper 1, 30 pp.

  • McDougall, K.L., A.A. Khuroo, L.L. Loope, C.G. Parks, A. Pauchard, Z.A. Reshi, I. Rushworth, and C. Keuffer. 2011. Plant invasions in mountains: global lessons for better management. Mountain Research and Development 31: 380–387.

    Article  Google Scholar 

  • McNeely, J. 2001. Invasive species: a costly catastrophe for native biodiversity. Land Use and Water Resources Research 1: 1–10.

    Google Scholar 

  • Mishra, V., D. Kumar, A.R. Ganguly, J. Sanjay, M. Majumdar, R. Krishnan, and R.P. Shah. 2014. Reliability of regional and global climate models to simulate precipitation extremes over India. Journal of Geophysical Research 119: 9301–9323.

    Google Scholar 

  • Murphy, S.T., N. Subedi, S.R. Jnawali, and B.R. Lamichane. 2013. Invasive mikania in Chitwan National Park, Nepal: The threat to the greater one-horned rhinoceros (Rhinoceros unicornis) and factors driving the invasion. Oryx 47: 361–368.

    Article  Google Scholar 

  • Pearce, J., and S. Ferrier. 2000. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling 128: 127–147.

    Article  Google Scholar 

  • Phillips, S., R. Anderson, and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Price, M.E. 2006. Global change in mountain regions. Dunkow: Sapiens Publishing.

    Google Scholar 

  • Priyanka, N., and P.K. Joshi. 2013. Effects of climate change on invasion potential distribution of Lantana camara. Journal of Earth Science and Climate Change 4: 164.

    Google Scholar 

  • Pysek, P., V. Jarosik, P.E. Hulme, J. Pergl, M. Hejda, U. Schaffner, and M. Vila. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology 18: 1725–1737.

    Article  Google Scholar 

  • Ren, Y.Y., G.Y. Ren, X.B. Sun, A.B. Shrestha, Q.L. You, Y.J. Zhan, R. Rajbhandari, P.F. Zhang, et al. 2017. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research 8: 148–156.

    Article  Google Scholar 

  • Richardson, D.M., and M. Rejmanek. 2011. Trees and shrubs as invasive alien species—a global review. Diversity and Distribution 17: 788–809.

    Article  Google Scholar 

  • Saurez-Mota, M.E., E. Oritz, J.L. Villasenor, and F.J. Espinosa-Garcia. 2016. Ecological niche modeling of invasive plant species according to invasion status and management needs: The case of Chromolaena odorata (Asteraceae) in South Africa. Polish Journal of Ecology 64: 369–383.

    Article  Google Scholar 

  • Seipel, T., J.M. Alexander, P.J. Edwards, and C. Kueffer. 2016. Range limits and population dynamics of non native plants spreading along elevation gradient. Perspective in Plant Ecology, Evolution and Systematics 20: 46–55.

    Article  Google Scholar 

  • Sharmila, S., S. Joseph, A.K. Sahai, S. Abhilash, and R. Chattopadhyay. 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planet Change 124: 62–78.

    Article  Google Scholar 

  • Shrestha, B.B., A. Shabbir, and S.W. Adkins. 2015. Parthenium hysterophorus in Nepal: A review of its weed status and possibilities for management. Weed Research 55: 132–144.

    Article  Google Scholar 

  • Song, M., C. Zhou, and H. Ouyang. 2004. Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mountain Research and Development 24: 166–173.

    Article  Google Scholar 

  • Stott, P.A., and J.A. Kettleborough. 2002. Origin and estimates of uncertainty in predictions of twenty first century temperature rise. Nature 416: 723–726.

    Article  CAS  Google Scholar 

  • Su, J., A. Aryal, Z. Nan, and W. Ji. 2015. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE 10: e0138969.

    Article  CAS  Google Scholar 

  • Swets, K. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.

    Article  CAS  Google Scholar 

  • Torchin, M.E., and C.E. Mitchell. 2004. Parasites, pathogens, and invasion by plants and animals. Frontiers in Ecology and Environment 2: 183–190.

    Article  Google Scholar 

  • Urban, M.C., G. Bocedi, A.P. Hendry, J.B. Mihoub, G. Péer, A. Singer, J.R. Bridle, L.G. Crozier, et al. 2016. Improving the forecast for biodiversity under climate change. Science 353: aad8464.

    Article  CAS  Google Scholar 

  • Watanabe, M., T. Suzuki, R. O'ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, et al. 2010. Improved climatic simulation by MIROC5: Mean states, variability, and climatic sensitivity. Journal of Climate 23: 6312–6335.

  • West, A.M., S. Kumar, C.S. Brown, T.J. Stohlgren, and J. Bromberg. 2016. Field validation of an invasive species Maxent model. Ecological Informatics 36: 126–134.

    Article  Google Scholar 

  • Whitney, K.D., and C.A. Gabler. 2008. Rapid evolution in invasive species, ‘invasive traits’, and receipient communities: Challenges for predicting invasive potential. Diversity and Distribution 14: 569–580.

    Article  Google Scholar 

  • Xiaodan, W., C. Genwei, and Z. Xianghao. 2011. Assessing potential impacts of climatic change on subalpine forests on the eastern Tibetan Plateau. Climatic Change 108: 225–241.

    Article  Google Scholar 

  • Xu, H., S. Qiang, P. Genovesi, H. Ding, J. Wu, L. Meng, Z. Han, J. Miao, et al. 2012. An inventory of invasive alien species in China. NeoBiota 15: 1–26.

    Article  Google Scholar 

  • Xu, W., Y. Xiao, J. Zhang, W. Yang, L. Zhang, V. Hull, Z. Wang, H. Zheng, et al. 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences 114: 1601–1606.

    Article  CAS  Google Scholar 

  • Zefferman, E., J.T. Stevens, G.K. Charles, M. Dunbar-Irwin, T. Emam, S. Fick, L.V. Morales, K.M. Wolf, et al. 2015. Plant communities in harsh sites are less invaded: A summary of observations and proposed explanations. AoB PLANTS 7: plv056.

    Article  CAS  Google Scholar 

  • Zhang, W., D. Yin, D. Huang, N. Du, J. Liu, W. Guo, and R. Wang. 2015. Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. Forest Ecology and Management 351: 1–8.

    Article  Google Scholar 

  • Zhao, X., W. Liu, and M. Zhou. 2012. Lack of local adaptation of invasive crofton weed (Ageratina adenophora) in different climatic areas of Yunnan province, China. Journal of Plant Ecology 6: 316–322.

    Article  Google Scholar 

  • Zhu, L., O.J. Sun, W. Sang, Z. Li, and K. Ma. 2007. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology 22: 1143–1154.

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the National Herbarium and Plant Laboratories (KATH), Godavari, Nepal for providing an opportunity to study and record spatial distribution datasets of selected invasive species through their archived herbarium sheets. We also appreciate Dr. Bharat Babu Shrestha, Dr. Chudamani Joshi and Mr. Rajesh Malla for making available some distribution dataset of selected invasive species. We are equally grateful to two anonymous reviewers for providing insightful comments on the earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Lamsal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamsal, P., Kumar, L., Aryal, A. et al. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47, 697–710 (2018). https://doi.org/10.1007/s13280-018-1017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1017-z

Keywords

Navigation