Skip to main content

Advertisement

Log in

Long non-coding RNAs: emerging players in osteosarcoma

  • Review
  • Published:
Tumor Biology

Abstract

Osteosarcoma is the most common kind of primary bone tumors with high morbidity in infants and adolescents. While the molecular mechanism of osteosarcoma has gained considerable attention, the mechanisms underlying its initiation and progression remain unclear. Recent studies have discovered that long non-coding RNAs (lncRNAs) play an important role in multiply biological processes including cell development, differentiation, proliferation, invasion, and migration. Deregulated expression of lncRNAs has been found in cancers including osteosarcoma. This review summarized the deregulation and functional role of lncRNAs in osteosarcoma and their potential application for diagnosis and treatment of osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. Micrornas in osteosarcoma. Clin Chim Acta. 2015;444:9–17.

    Article  CAS  PubMed  Google Scholar 

  2. Weng Y, Chen Y, Chen J, Liu Y, Bao T. Common genetic variants in microrna processing machinery genes are associated with risk and survival in patients with osteosarcoma. Mol Gen Genomics. 2015. [Epub ahead of print].

  3. Wang Y, Jia LS, Yuan W, Wu Z, Wang HB, Xu T, et al. Low mir-34a and mir-192 are associated with unfavorable prognosis in patients suffering from osteosarcoma. Am J Trans Res. 2015;7:111–9.

    CAS  Google Scholar 

  4. Shen L, Chen XD, Zhang YH. Microrna-128 promotes proliferation in osteosarcoma cells by downregulating pten. Tumour Biol. 2014;35:2069–74.

    Article  CAS  PubMed  Google Scholar 

  5. Huang J, Gao K, Lin J, Wang Q. Microrna-100 inhibits osteosarcoma cell proliferation by targeting cyr61. Tumour Biol. 2014;35:1095–100.

    Article  CAS  PubMed  Google Scholar 

  6. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427–34.

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, et al. Mir-16 inhibits cell proliferation by targeting igf1r and the raf1-mek1/2-erk1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72.

    Article  CAS  PubMed  Google Scholar 

  8. Han K, Chen X, Bian N, Ma B, Yang T, Cai C, et al. Microrna profiling identifies mir-195 suppresses osteosarcoma cell metastasis by targeting ccnd1. Oncotarget. 2015.

  9. Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, et al. Mir-27a and mir-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6:4920–35.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH. Ctgf increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating mir-519d. Oncotarget. 2014;5:3800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheng C, Chen ZQ, Shi XT. Microrna-320 inhibits osteosarcoma cells proliferation by directly targeting fatty acid synthase. Tumour Biol. 2014;35:4177–83.

    Article  CAS  PubMed  Google Scholar 

  12. Li E, Zhang J, Yuan T, Ma B. Mir-145 inhibits osteosarcoma cells proliferation and invasion by targeting rock1. Tumour Biol. 2014;35:7645–50.

    Article  CAS  PubMed  Google Scholar 

  13. Tano K, Akimitsu N. Long non-coding rnas in cancer progression. Front Genet. 2012;3:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li CH, Chen Y. Targeting long non-coding rnas in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45:1895–910.

    Article  CAS  PubMed  Google Scholar 

  15. Chiyomaru T, Fukuhara S, Saini S, Majid S, Deng G, Shahryari V, et al. Long non-coding rna hotair is targeted and regulated by mir-141 in human cancer cells. J Biol Chem. 2014;289:12550–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding rnas: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.

    Article  CAS  PubMed  Google Scholar 

  17. Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, et al. Long non-coding rna anril (cdkn2b-as) is induced by the atm-e2f1 signaling pathway. Cell Signal. 2013;25:1086–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, et al. Long noncoding rna associated-competing endogenous rnas in gastric cancer. Sci Rep. 2014;4:6088.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu X, Li Z. Long non-coding rna hotair: a novel oncogene (review). Mol Med Rep. 2015;12:5611–8.

    CAS  PubMed  Google Scholar 

  20. Yu X, Li Z. Long non-coding rna growth arrest-specific transcript 5 in tumor biology. Oncol Lett. 2015;10:1953–8.

    PubMed  PubMed Central  Google Scholar 

  21. Ma MZ, Chu BF, Zhang Y, Weng MZ, Qin YY, Gong W, et al. Long non-coding rna ccat1 promotes gallbladder cancer development via negative modulation of mirna-218-5p. Cell Death Dis. 2015;6, e1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou S, Wang J, Zhang Z. An emerging understanding of long noncoding rnas in kidney cancer. J Cancer Res Clin Oncol. 2014.

  23. Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, et al. Long noncoding rna anril promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing klf2 and p21 expression. Mol Cancer Ther. 2015;14:268–77.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, et al. Long noncoding rna anril indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of mir-99a/mir-449a. Oncotarget. 2014;5:2276–92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iranpour M, Soudyab M, Geranpayeh L, Mirfakhraie R, Azargashb E, Movafagh A, et al. Expression analysis of four long noncoding rnas in breast cancer. Tumour Biol. 2015.

  26. Hua L, Wang CY, Yao KH, Chen JT, Zhang JJ, Ma WL. High expression of long non-coding rna anril is associated with poor prognosis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2015;8:3076–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu JJ, Lin YY, Ding JX, Feng WW, Jin HY, Hua KQ. Long non-coding rna anril predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol. 2015;46:2497–505.

    PubMed  Google Scholar 

  28. Martinez-Fernandez M, Feber A, Duenas M, Segovia C, Rubio C, Fernandez M, et al. Analysis of the polycomb-related lncrnas hotair and anril in bladder cancer. Clin Epigenetics. 2015;7:109.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, et al. Decreased expression of long noncoding rna gas5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 2014;14:319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li JP, Liu LH, Li J, Chen Y, Jiang XW, Ouyang YR, et al. Microarray expression profile of long noncoding rnas in human osteosarcoma. Biochem Biophys Res Commun. 2013;433:200–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu KP, Zhang CL, Shen GQ, Zhu ZS. Long noncoding rna expression profiles of the doxorubicin-resistant human osteosarcoma cell line mg63/dxr and its parental cell line mg63 as ascertained by microarray analysis. Int J Clin Exp Pathol. 2015;8:8754–73.

    PubMed  PubMed Central  Google Scholar 

  32. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S. Malat1 long non-coding rna in cancer. Biochim Biophys Acta. 2015.

  33. Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, et al. Lncrna malat1 functions as a competing endogenous rna to regulate zeb2 expression by sponging mir-200s in clear cell kidney carcinoma. Oncotarget. 2015;6:38005–15.

    PubMed  PubMed Central  Google Scholar 

  34. Wang D, Ding L, Wang L, Zhao Y, Sun Z, Karnes RJ, et al. Lncrna malat1 enhances oncogenic activities of ezh2 in castration-resistant prostate cancer. Oncotarget. 2015.

  35. Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, et al. The long noncoding malat-1 rna indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6:1984–92.

    Article  PubMed  Google Scholar 

  36. Zhou X, Liu S, Cai G, Kong L, Zhang T, Ren Y, et al. Long non coding rna malat1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Sci Rep. 2015;5:15972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin C, Yan B, Lu Q, Lin Y, Ma L. The role of malat1/mir-1/slug axis on radioresistance in nasopharyngeal carcinoma. Tumour Biol. 2015.

  38. Huang Z, Huang L, Shen S, Li J, Lu H, Mo W, et al. Sp1 cooperates with sp3 to upregulate malat1 expression in human hepatocellular carcinoma. Oncol Rep. 2015;34:2403–12.

    PubMed  Google Scholar 

  39. Qi P, Xu MD, Ni SJ, Huang D, Wei P, Tan C, et al. Low expression of loc285194 is associated with poor prognosis in colorectal cancer. J Transl Med. 2013;11:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding YC, Yu W, Ma C, Wang Q, Huang CS, Huang T. Expression of long non-coding rna loc285194 and its prognostic significance in human pancreatic ductal adenocarcinoma. Int J Clin Exp Pathol. 2014;7:8065–70.

    PubMed  PubMed Central  Google Scholar 

  41. Lu H, He Y, Lin L, Qi Z, Ma L, Li L, et al. Long non-coding rna malat1 modulates radiosensitivity of hr-hpv+ cervical cancer via sponging mir-145. Tumour Biol. 2015.

  42. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. Tgf-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res. 2014;20:1531–41.

    Article  CAS  PubMed  Google Scholar 

  43. Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G, et al. Downregulation of long noncoding rna malat1 induces epithelial-to-mesenchymal transition via the pi3k-akt pathway in breast cancer. Int J Clin Exp Pathol. 2015;8:4881–91.

    PubMed  PubMed Central  Google Scholar 

  44. Tian X, Xu G. Clinical value of lncrna malat1 as a prognostic marker in human cancer: systematic review and meta-analysis. BMJ Open. 2015;5, e008653.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Konishi H, Ichikawa D, Yamamoto Y, Arita T, Shoda K, Hiramoto H, et al. Plasma malat1 level is associated with liver damage and predicts development of hepatocellular carcinoma. Cancer Sci. 2015.

  46. Taniguchi M, Fujiwara K, Nakai Y, Ozaki T, Koshikawa N, Toshio K, et al. Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole-imidazole polyamide, which targets an e-box motif. FEBS Open Bio. 2014;4:328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. Malat1 promotes the proliferation and metastasis of osteosarcoma cells by activating the pi3k/akt pathway. Tumour Biol. 2015;36:1477–86.

    Article  CAS  PubMed  Google Scholar 

  48. Fang D, Yang H, Lin J, Teng Y, Jiang Y, Chen J, et al. 17beta-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating mir-9 and thus degrades malat-1 in osteosarcoma cell mg-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun. 2015;457:500–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cai X, Liu Y, Yang W, Xia Y, Yang C, Yang S, et al. Long noncoding rna malat1 as a potential therapeutic target in osteosarcoma. J Orthop Res. 2015.

  50. Young TL, Matsuda T, Cepko CL. The noncoding rna taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15:501–12.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, et al. P53-regulated long non-coding rna tug1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating hoxb7 expression. Cell Death Dis. 2014;5, e1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han Y, Liu Y, Gui Y, Cai Z. Long intergenic non-coding rna tug1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol. 2013;107:555–9.

    Article  CAS  PubMed  Google Scholar 

  53. Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding rna tug1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of klf2. Mol Cancer. 2015;14:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu Y, Wang J, Qiu M, Xu L, Li M, Jiang F, et al. Upregulation of the long noncoding rna tug1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol. 2015;36:1643–51.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding rna tug1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14:2311–5.

    Article  PubMed  Google Scholar 

  56. Ma B, Li M, Zhang L, Huang M, Lei JB, Fu GH, et al. Upregulation of long non-coding rna tug1 correlates with poor prognosis and disease status in osteosarcoma. Tumour Biol. 2015.

  57. Wang Y, Yao J, Meng H, Yu Z, Wang Z, Yuan X, et al. A novel long non-coding rna, hypoxia-inducible factor-2alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro. Mol Med Rep. 2015;11:2534–40.

    CAS  PubMed  Google Scholar 

  58. Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, et al. Long non-coding rna h19 promotes glioma cell invasion by deriving mir-675. PLoS One. 2014;9, e86295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y. Increased level of h19 long noncoding rna promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg. 2015:1-8. [Epub ahead of print].

  60. Raveh E, Matouk IJ, Gilon M, Hochberg A. The h19 long non-coding rna in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer. 2015;14:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. H19-derived mir-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol. 2015.

  62. Zhang E, Li W, Yin D, De W, Sun S, Han L. C-myc-regulated long non-coding rna h19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour Biol. 2015.

  63. Li H, Li J, Jia S, Wu M, An J, Zheng Q, et al. Mir675 upregulates long noncoding rna h19 through activating egr1 in human liver cancer. Oncotarget. 2015;6:31958–84.

    PubMed  PubMed Central  Google Scholar 

  64. Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G. The interaction between mir-141 and lncrna-h19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol Biochem. 2015;36:1440–52.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu Z, Song L, He J, Sun Y, Liu X, Zou X. Ectopic expressed long non-coding rna h19 contributes to malignant cell behavior of ovarian cancer. Int J Clin Exp Pathol. 2015;8:10082–91.

    PubMed  PubMed Central  Google Scholar 

  66. Ulaner GA, Vu TH, Li T, Hu JF, Yao XM, Yang Y, et al. Loss of imprinting of igf2 and h19 in osteosarcoma is accompanied by reciprocal methylation changes of a ctcf-binding site. Hum Mol Genet. 2003;12:535–49.

    Article  CAS  PubMed  Google Scholar 

  67. Ulaner GA, Yang Y, Hu JF, Li T, Vu TH, Hoffman AR. Ctcf binding at the insulin-like growth factor-ii (igf2)/h19 imprinting control region is insufficient to regulate igf2/h19 expression in human tissues. Endocrinology. 2003;144:4420–6.

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Meng G, Guo QN. Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol. 2008;84:234–9.

    Article  CAS  PubMed  Google Scholar 

  69. Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. Hedgehog signaling induces osteosarcoma development through yap1 and h19 overexpression. Oncogene. 2014;33:4857–66.

    Article  CAS  PubMed  Google Scholar 

  70. Pasic I, Shlien A, Durbin AD, Stavropoulos DJ, Baskin B, Ray PN, et al. Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding rnas and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Cancer Res. 2010;70:160–71.

    Article  CAS  PubMed  Google Scholar 

  71. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, et al. Lncrna loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant Numbers: 81401847, 81272053 and 81330044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiong Shen.

Additional information

Zheng Li and Xin Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, X. & Shen, J. Long non-coding RNAs: emerging players in osteosarcoma. Tumor Biol. 37, 2811–2816 (2016). https://doi.org/10.1007/s13277-015-4749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4749-4

Keywords

Navigation