Skip to main content
Log in

Liquid Crystal-Based Droplet Sensor for the Detection of Hg(II) Ions Using an Aptamer as the Recognition Element

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Herein, we report the development of a simple liquid crystal (LC)-based droplet sensor for the specific detection of mercury ions (Hg2+) in an aqueous medium, using trimethyl octadecyl ammonium bromide (OTAB) and an Hg2+-binding aptamer. In terms of the mechanism, the system senses the homeotropic orientation of the LCs at the LC–aqueous interface that is induced by the self-assembled monolayer of positively charged OTAB molecules. In the absence of Hg2+, electrostatic interactions between the positively charged OTAB and negatively charged aptamer molecules disturb the organization of the OTAB monolayer, causing the LCs to adopt a planar orientation. By contrast, an aptamer hairpin structure formed in the presence of Hg2+ weakens the interactions between the OTAB and aptamer molecules, causing the OTAB monolayer to self-reassemble and the LCs to consequently adopt a homeotropic orientation. These LC orientational transitions are observable under a polarized optical microscope. This sensor had a low limit of detection of 100 and 250 pM for buffer and tap water samples, respectively. Therefore, our LC-based droplet sensor is a suitable platform for the simple, specific, and convenient detection of Hg2+ in an aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ekino, S., Susa, M., Ninomiya, T., Imamura, K., Kitamura, T.: Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J. Neurol. Sci. 262, 131–144 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, D., Bomford, R.R., Russell, D.S.: Poisoning by methyl mercury compounds. QJM 9, 193–226 (1940)

    CAS  Google Scholar 

  3. Bose-O’Reilly, S., McCarty, K.M., Steckling, N., Lettmeier, B.: Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 40, 186–215 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Han, K.N., Choi, J.S., Kwon, J.: Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7, 1–7 (2017)

    Article  Google Scholar 

  5. Poulin, J., Gibb, H.: Mercury assessing the environmental burden of disease at national and local levels. WHO Environ. Burd. Dis. 16, 1–42 (2008)

    Google Scholar 

  6. Bartzatt, R.: Toxicity of mercury inhalation. Environ. Sci. An Indian J. 6, 56–62 (2011)

    CAS  Google Scholar 

  7. Ii, J.C.C.: Mercury exposure and public health. Pediatr. Clin. North Am. 54, 237–269 (2007)

    Google Scholar 

  8. Karunasagar, D., Arunachalam, J., Gangadharan, S.: Development of a ‘collect and punch’ cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. J. Anal. At. Spectrom. 13, 679–682 (1998)

    Article  CAS  Google Scholar 

  9. Gu, Z., Zhao, M., Sheng, Y., Bentolila, L.A., Tang, Y.: Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal. Chem. 83, 2324–2329 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Fawell, J.K.: Mercury in drinking-water. World Heal. Organ. (2005)

  11. Wang, M., Feng, W., Shi, J., Zhang, F., Wang, B., Zhu, M., Li, B., Zhao, Y., Chai, Z.: Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 71, 2034–2039 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Leopold, K., Foulkes, M., Worsfold, P.: Methods for the determination and speciation of mercury in natural waters—a review. Anal. Chim. Acta 663, 127–138 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Ono, A., Togashi, H.: Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chemie Int. Ed. 43, 4300–4302 (2004)

    Article  CAS  Google Scholar 

  14. Miyake, Y., Togashi, H., Tashiro, M., Yamaguchi, H., Oda, S., Kudo, M., Tanaka, Y., Kondo, Y., Sawa, R., Fujimoto, T., Machinami, T., Ono, A.: MercuryII-mediated formation of thymine–HgII–thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128, 2172–2173 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, Z., Su, Y., Li, J., Li, D., Zhang, J., Song, S., Zhao, Y., Li, G., Fan, C.: Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81, 7660–7666 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Xuan, F., Luo, X., Hsing, I.M.: Conformation-dependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection. Anal. Chem. 85, 4586–4593 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Wu, D., Zhang, Q., Chu, X., Wang, H., Shen, G., Yu, R.: Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosens. Bioelectron. 25, 1025–1031 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, X., Chen, L., Lin, Z., Qiu, B., Chen, G.: A highly sensitive and selective ‘signal-on’ electrochemiluminescent biosensor for mercury. ChemComm 46, 3149–3151 (2010)

    CAS  Google Scholar 

  19. Li, M., Wang, Q., Shi, X., Hornak, L.A., Wu, N.: Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal. Chem. 83, 7061–7065 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, G.H., Chen, W.Y., Yen, Y.C., Wang, C.W., Chang, H.T., Chen, C.F.: Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86, 6843–6849 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Liu, M., Wang, Z., Zong, S., Chen, H., Zhu, D., Wu, L., Hu, G., Cui, Y.: SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl. Mater. Interfaces 6, 7371–7379 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Du, Y., Li, B., Wang, E.: ‘Fitting’ makes ‘sensing’ simple: label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res. 46, 203–213 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Goossens, K., Lava, K., Bielawski, C.W., Binnemans, K.: Ionic liquid crystals: versatile materials. Chem. Rev. 116, 4643–4807 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Iino, H., Usui, T., Hanna, J.I.: Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 1–8 (2015)

    Article  Google Scholar 

  25. An, Z., Jang, C.-H.: Liquid-crystal-droplet-based monitoring system for water-soluble inorganic acidic gases from the atmosphere. BioChip J. (2020). https://doi.org/10.1007/s13206-020-4304-2

    Article  Google Scholar 

  26. Ren, H., Jang, C.H.: A simple liquid crystal-based aptasensor using a hairpin-shaped aptamer for the bare-eye detection of carcinoembryonic antigen. Biochip J. 13, 352–361 (2019)

    Article  CAS  Google Scholar 

  27. Zhang, M., Jang, C.H.: Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal. Biochem. 455, 13–19 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Hu, Q.Z., Jang, C.H.: Spontaneous formation of micrometer-scale liquid crystal droplet patterns on solid surfaces and their sensing applications. Soft Matter 9, 5779–5784 (2013)

    Article  CAS  Google Scholar 

  29. Han, G.R., Jang, C.H.: Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations. Talanta 128, 44–50 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, S., Jang, C.H.: Nematic liquid crystal micro-droplets on solid surfaces and their ordering transition in bulk aqueous solution. Liq. Cryst. 42, 1436–1443 (2015)

    Article  CAS  Google Scholar 

  31. Zhong, S., Jang, C.H.: Real-space observation of internal ordering configurations of sessile liquid crystal micro-droplets. Liq. Cryst. 43, 1293–1298 (2016)

    Article  CAS  Google Scholar 

  32. Yang, S., Wu, C., Tan, H., Wu, Y., Liao, S., Wu, Z., Shen, G., Yu, R.: Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal. Chem. 85, 14–18 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. Fan, C., Zhu, Z., Zhao, Y., Su, Y., Li, J., Song, S., Li, G., Zhang, J., Li, D.: Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81, 7660–7666 (2009)

    Article  PubMed  Google Scholar 

  34. Li, T., Dong, S., Wang, E.: Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based dnazymes. Anal. Chem. 81, 2144–2149 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Kanayama, N., Takarada, T., Maeda, M.: Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles. ChemComm 47, 2077–2079 (2011)

    CAS  Google Scholar 

  36. Xiong, E., Wu, L., Zhou, J., Yu, P., Zhang, X., Chen, J.: A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure. Anal. Chim. Acta 853, 242–248 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Liu, J., Lu, Y.: Rational design of ‘turn-on’ allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chemie Int. Ed. 46, 7587–7590 (2007)

    Article  CAS  Google Scholar 

  38. Wang, G., Lu, Y., Lu, Y., Yan, C.: DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sens. Actuators B Chem. 211, 1–6 (2015)

    Article  CAS  Google Scholar 

  39. Liu, X., Tang, Y., Wang, L., Zhang, J., Song, S., Fan, C., Wang, S.: Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv. Mater. 19, 1471–1474 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Gachon University research fund of 2020 (GCU-202002750001) and the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1003862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Jang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 950 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, P.T.K., Yun, K. & Jang, CH. Liquid Crystal-Based Droplet Sensor for the Detection of Hg(II) Ions Using an Aptamer as the Recognition Element. BioChip J 15, 152–161 (2021). https://doi.org/10.1007/s13206-021-00010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00010-7

Keywords

Navigation