Skip to main content
Log in

Per-sample prediction intervals for extreme learning machines

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Prediction intervals in supervised machine learning bound the region where the true outputs of new samples may fall. They are necessary in the task of separating reliable predictions of a trained model from near random guesses, minimizing the rate of false positives, and other problem-specific tasks in applied machine learning. Many real problems have heteroscedastic stochastic outputs, which explains the need of input-dependent prediction intervals. This paper proposes to estimate the input-dependent prediction intervals by a separate extreme learning machine model, using variance of its predictions as a correction term accounting for the model uncertainty. The variance is estimated from the model’s linear output layer with a weighted Jackknife method. The methodology is very fast, robust to heteroscedastic outputs, and handles both extremely large datasets and insufficient amount of training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akusok A, Miche Y, Hegedus J, Nian R, Lendasse A (2014) A two-stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cognit Comput 6(3):432–445

    Article  Google Scholar 

  2. Hegedus J, Miche Y, Ilin A, Lendasse A (2011) Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers. In: 2011 seventh international conference on computational intelligence and security, pp 1016–1023

  3. Pevec D, Kononenko I (2014) Input dependent prediction intervals for supervised regression. Intell Data Anal 18(5):873–887

    Article  Google Scholar 

  4. Akusok A, Miche Y, Karhunen J, Björk KM, Nian R, Lendasse A (2015) Arbitrary category classification of websites based on image content. IEEE Comput Intell Mag 10(2):30–41

    Article  Google Scholar 

  5. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: A new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 2, pp 985–990

  6. Lendasse A, Man VC, Miche Y, Huang GB (2016) Advances in extreme learning machines (ELM2014). Neurocomputing 174, Part A:1–3

    Article  Google Scholar 

  7. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  8. Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 5:1035–1038

    MATH  Google Scholar 

  9. Miche Y, van Heeswijk M, Bas P, Simula O, Lendasse A. (2011)TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. In: Advances in extreme learning machine: theory and applications biological inspired systems. Computational and ambient intelligence selected papers of the 10th international work-conference on artificial neural networks (IWANN2009), vol 74(16), pp 2413–2421

  10. Akusok A, Veganzones D, Miche Y, Björk KM, du Jardin P, Séverin E, Lendasse A (2015) MD-ELM: originally mislabeled samples detection using OP-ELM model. Neurocomputing 159:242–250

    Article  Google Scholar 

  11. Termenon M, Graña M, Savio A, Akusok A, Miche Y, Björk KM, Lendasse A (2016) Brain MRI morphological patterns extraction tool based on extreme learning machine and majority vote classification. Neurocomputing 174, Part A:344–351

    Article  Google Scholar 

  12. Huang GB, Bai Z, Kasun L, Vong CM (2015) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29

    Article  Google Scholar 

  13. Sovilj D, Eirola E, Miche Y, Björk KM, Nian R, Akusok A, Lendasse A (2016) Extreme learning machine for missing data using multiple imputations. Neurocomputing 174, Part A:220–231

    Article  Google Scholar 

  14. Huang Z, Yu Y, Gu J, Liu H (2017) An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans Cybern 47(4):920–933

    Article  Google Scholar 

  15. Akusok A, Björk KM, Miche Y, Lendasse A (2015) High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 3:1011–1025

    Article  Google Scholar 

  16. Swaney C, Akusok A, Björk KM, Miche Y, Lendasse A (2015) Efficient skin segmentation via neural networks: HP-ELM and BD-SOM. In: INNS conference on big data 2015 program, San Francisco, CA, USA 8–10 Aug 2015, vol 53, pp 400–409

  17. Soria-Olivas E, Gomez-Sanchis J, Martin JD, Vila-Frances J, Martinez M, Magdalena JR, Serrano AJ (2011) BELM: Bayesian extreme learning machine. IEEE Trans Neural Netw 22(3):505–509

    Article  Google Scholar 

  18. Chen Y, Yang J, Wang C, Park D (2016) Variational Bayesian extreme learning machine. Neural Comput Appl 27(1):185–196

    Article  Google Scholar 

  19. Shang Z, He J (2015) Confidence-weighted extreme learning machine for regression problems. Neurocomputing 148:544–550

    Article  Google Scholar 

  20. He YL, Wang XZ, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364(C):222–240

    Article  Google Scholar 

  21. Asai H, Tanaka S, Uegima K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12(6):903–07

    Article  MATH  Google Scholar 

  22. Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  23. Wang XZ, Zhang T, Wang R (2017) Noniterative deep learning: incorporating restricted boltzmann machine into multilayer random weight neural networks. IEEE Trans Syst Man Cybern Syst PP(99):1–10

    Google Scholar 

  24. Ashfaq RAR, Wang XZ, Huang JZ, Abbas H, He YL (2017) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci 378:484–497

    Article  Google Scholar 

  25. Pevec D, Kononenko I (2015) Prediction intervals in supervised learning for model evaluation and discrimination. Appl Intell 42(4):790–804

    Article  Google Scholar 

  26. Lin B, Wang Q, Zhang J, Pang Z (2017) Stable prediction in high-dimensional linear models. Stat Comput 27(5):1401–1412

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. In: Neural networks selected papers from the 7th Brazilian symposium on neural networks (SBRN ’04), vol 70(1–3), pp 489–501

  28. Rao CR, Mitra SK (1972) Generalized inverse of a matrix and its applications. In: Proceedings of the sixth Berkeley symposium on mathematical statistics and probability. Theory of statistics, vol 1. University of California Press, Berkeley, pp 601–620

  29. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. Syst Man Cybern Part B Cybern IEEE Trans 42(2):513–529

    Article  Google Scholar 

  30. Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics, vol 4. Springer Science + Business Media, Singapore

    MATH  Google Scholar 

  31. Shao J, Wu CFJ (1987) Heteroscedasticity-robustness of Jackknife variance estimators in linear models. Ann Stat 15(4):1563–1579

    Article  MathSciNet  MATH  Google Scholar 

  32. Loève M (1955) Probability Theory; foundations. Random Sequences. D. Van Nostrand Company, New York

    MATH  Google Scholar 

  33. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis, vol 5. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  34. Nix DA, Weigend AS (1995) Learning local error bars for nonlinear regression. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 489–496

    Google Scholar 

  35. Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 4:1261–1295

    Article  MathSciNet  MATH  Google Scholar 

  36. Horn PS, Pesce AJ, Copeland BE (1998) A robust approach to reference interval estimation and evaluation. Clin Chem 44(3):622–631

    Google Scholar 

  37. Flachaire E (2005) Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap. In: 2nd CSDA special issue on computational econometrics, vol 49(2), pp 361–376

  38. Davidson R, Flachaire E (2008) The wild bootstrap, tamed at last. J Econometr 146(1):162–169

    Article  MathSciNet  MATH  Google Scholar 

  39. Khosravi A, Nahavandi S, Creighton D, Atiya AF (2011) Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans Neural Netw 22(3):337–346

    Article  Google Scholar 

  40. Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808

    Article  Google Scholar 

  41. Nierenberg DW, Stukel TA, Baron JA, Dain BJ, Greenberg ER (1989) Determinants of plasma levels of beta-carotene and retinol. Am J Epidemiol 130(3):511–521

    Article  Google Scholar 

  42. Guidorzi R, Rossi R (1974) Identification of a power plant from normal operating records. Autom Control Theory Appl 2(3):63–67

    Google Scholar 

  43. Chryssolouris G, Lee M, Ramsey A (1996) Confidence interval prediction for neural network models. IEEE Trans Neural Netw 7(1):229–232

    Article  Google Scholar 

  44. Ding AA, He X (2003) Backpropagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise. IEEE Trans Neural Netw 14(2):253–262

    Article  Google Scholar 

  45. MacKay DJC (1992) The evidence framework applied to classification networks. Neural Comput 4(5):720–736

    Article  Google Scholar 

  46. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally-pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  Google Scholar 

  47. Zhu H, Tsang EC, Wang XZ, Ashfaq RAR (2017) Monotonic classification extreme learning machine. Neurocomputing 225(Supplement C):205–213

    Article  Google Scholar 

  48. Phung SL, Bouzerdoum A, Chai DS (2005) Skin segmentation using color pixel classification: analysis and comparison. Pattern Anal Mach Intell IEEE Trans 27(1):148–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Akusok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akusok, A., Miche, Y., Björk, KM. et al. Per-sample prediction intervals for extreme learning machines. Int. J. Mach. Learn. & Cyber. 10, 991–1001 (2019). https://doi.org/10.1007/s13042-017-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0777-2

Keywords

Navigation