Skip to main content
Log in

Comparison of FePt and Pt Nanostructures for Oxygen Reduction Reaction in Basic Medium

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

FePt nanoparticles (NPs) and colloidal nanoparticle clusters (CNCs) have been synthesized by the reduction of platinum acetylacetonate (Pt(acac)2) combined with thermal decomposition of iron pentacarbonyl (Fe(CO)5) and compared to pure Pt NPs and CNCs for the catalytic activity of the oxygen reduction (ORR). The formation of NPs and CNCs has been carried out controlling injection temperature of the precursors and the surfactants during the synthesis. The size of the NPs and the CNCs formed is around 3 and 38 nm, respectively. High electrocatalytic performance of the FePt CNCs in comparison with that of nanoparticles and nanocluster of platinum has been obtained for the reduction reaction (ORR) in basic medium. The ORR is carried out by a four-electron charge transfer. The increase in the activity of the CNC structures formed by FePt nanoparticles can be attributed to the alloy formation that produces surface and electronic changes of the Pt atoms and to the structure of the CNCs obtained.

Polarization curves of (a) CNCs FePt, (b) NPs FePt, (c) CNCs Pt, and (d) NPs Pt and their morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.J. Wang, D.P. Wilkinson, J. Zhang, Chem. Rev. 7625, 111 (2011)

    Google Scholar 

  2. H. Zhang, P.K. Shen, Chem. Rev. 2780, 112 (2012)

    Google Scholar 

  3. C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, S.S. Wong, Nano Lett. 2013, 12 (2012)

    Google Scholar 

  4. C. Koenigsmann, E. Sutter, R.R. Adzic, S.S. Wong, J. Phys. Chem. C 15297, 116 (2012)

    Google Scholar 

  5. A. Rabis, P. Rodriguez, T.J. Schmidt, ACS Catal. 864, 2 (2012)

    Google Scholar 

  6. J. Wu, L. Qi, H. You, A.M. Gross, J. Li, H. Yang, J. Am. Chem. Soc. 11880, 134 (2012)

    Google Scholar 

  7. G. Shaojun, L. Dongguo, Z. Huiyuan, Z. Sen, M. Nenad, M. Vojislav, R. Stamenkovic, S. Shouheng Angew, Chem. Int. Ed. 3465, 52 (2013)

    Google Scholar 

  8. H. Ataee-Esfahani, L. Wang, Y. Nemoto, Y. Yamauchi, Chem. Mater. 6310, 22 (2010)

    Google Scholar 

  9. W.Z. Li, Z.W. Chen, L.B. Xu, Y.S. Yan, J. Power Sources 2534, 195 (2010)

    Google Scholar 

  10. V. Mazumder, M.F. Chi, K.L. More, S.H. Sun, Angew. Chem. Int. Ed. 9368, 49 (2010)

    Google Scholar 

  11. F. Maroun, F. Ozanam, O.M. Magnussen, R.J. Behm, Science 1811, 293 (2001)

    Google Scholar 

  12. R. Burch, Acc. Chem. Res. 24, 15 (1982)

    Google Scholar 

  13. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lukas, G.F. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 241, 6 (2007)

    Google Scholar 

  14. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Science 493, 315 (2007)

    Google Scholar 

  15. J. Wu, A. Gross, H. Yang, Nano Lett. 798, 11 (2011)

    Google Scholar 

  16. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 3750, 146 (1999)

    Google Scholar 

  17. G. Shaojun, L. Dongguo, Z. Huiyuan, Z. Sen, M.M. Nenad, R. Vojislav Stamenkovic, S. Shouheng, Angew. Chem. Int. Ed. 3465, 52 (2013)

    Google Scholar 

  18. K. Jaemin, L. Youngmin, S. Shouheng, J. Am. Chem. Soc. 4996, 132 (2010)

    Google Scholar 

  19. J. Snyder, I. McCue, K. Livi, J. Erlebacher, J. Am. Chem. Soc. 8633, 134 (2012)

    Google Scholar 

  20. L. Yizhong, C. Wei, J. Power Sources 107, 197 (2012)

    Google Scholar 

  21. W. Chen, S. Chen, Angew. Chem. Int. Ed. 2386, 48 (2009)

    Google Scholar 

  22. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, T. Lu, J. Phys. Chem. C 9826, 117 (2013)

    Google Scholar 

  23. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 1989, 287 (2000)

    Google Scholar 

  24. Z. Lu, Y. Yin, Chem. Soc. Rev. 6874, 41 (2012)

    Google Scholar 

  25. X.W. Teng, H. Yang, J. Am. Chem. Soc. 14559, 125 (2003)

    Google Scholar 

  26. Z. Chen, M. Waje, W. Li, Y. Yan, Angew Chem 4138, 119 (2007)

    Google Scholar 

  27. D. Chen, X. Zhao, S. Chen, Y. Li, X. Fu, Q. Wu, S. Li, Y. Li, B.-L. Su, R.S. Ruoff, Carbon 755, 68 (2014)

    Google Scholar 

  28. J. Zeng, S. Liao, J. Yang Lee, Z. Liang, Inter J Hydrogen Energy 942, 35 (2010)

    Google Scholar 

Download references

Acknowledgments

The work has been supported by the Spanish Ministry of Science and Innovation: MAT2012- 37109-C02 and 01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Herrasti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco, V., Ovejero, J.G., Crespo, P. et al. Comparison of FePt and Pt Nanostructures for Oxygen Reduction Reaction in Basic Medium. Electrocatalysis 7, 262–268 (2016). https://doi.org/10.1007/s12678-016-0305-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0305-2

Keywords

Navigation