Skip to main content
Log in

Response Surface Methodology Based Modelling of Friction–Wear Behaviour of Al6061/9%Gr/WC MMCs and Its Optimization Using Fuzzy GRA

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present paper an attempt is made to establish a response surface methodology based non-linear mathematical model for the friction–wear behaviour of as cast and heat-treated Al6061/9%Gr/WC (with WC at 1, 2 and 3 wt%) metal matrix composites (MMCs). During experimentation, the process parameters, namely percentage of WC, load, sliding distance and sliding velocity have been considered as inputs and wear loss (WL) and coefficient of friction (COF) have been treated as the responses. Results reveal that, for as-cast Al6061/9%Gr/WC hybrid composites, the WL decreases with increase in percentage of WC and increases with the increase in load, sliding distance and sliding velocity. Moreover, COF decreases with increase in percentage of WC and sliding velocity and increases with increase in the load and sliding distance. It has also been observed that the WL and COF of heat treated composites are found to be less than the as cast MMCs. Further, fuzzy grey relational analysis (GRA) has been used to perform the multi objective optimization of the said wear process. Finally, the evidence of wear phenomenon for the said composites have been examined with the help of scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chawla K K, Composite Materials Science and Engineering, Springer, New York (2013).

    Google Scholar 

  2. Jones R M, Mechanics of Composite Materials, 2nd edn, Taylor & Francis, Inc., Boca Raton (1999).

    Google Scholar 

  3. Andreas M, and Javier L, Annu Rev Mater Res 40 (2010) 243.

    Article  Google Scholar 

  4. Kaushik N, and Singhaal S, Int J Eng Technol 9 (2017) 3201.

    Google Scholar 

  5. Soni S, and Pandey A, Int J Adv Mech Eng 4 (2014) 767.

    Google Scholar 

  6. Fogagnolo J B, Robert M H, and Torraba J M, Mater Sci Eng 426 (2006) 85.

    Article  Google Scholar 

  7. Ghauri K M, Ali L, Ahmed A, Ahmed R, Din K M, Chaudhary I A, and Karim R A, Pak J Eng Appl Sci 12 (2013) 102.

    Google Scholar 

  8. Vasanth Kumar R, Keshavamurthy R, and Perugu C S, in IOP Conference Series: Materials Science and Engineering, vol 149 (2016), p 1.

  9. Rao T B, J Tribol, https://doi.org/10.1115/1.4037845 (in press).

  10. Radhika N, and Raghu R, J Tribol 139 (2017) 041602-1.

    Article  Google Scholar 

  11. Shouvik G, Prasanth S, and Goutam S, J Miner Mater Charact Eng 11 (2012) 1085.

    Google Scholar 

  12. Basavarajappa S, Chandramohan G, Mahadevan A, Thangavelu M, Subramanian R, and Gopalakrishnan P, Wear 262 (2007) 1007.

    Article  CAS  Google Scholar 

  13. Prashanth D G, Karthick C M, Hasan A M, and Amarnath K C J, Int J Sci Eng Res 6 (2015) 740.

    Google Scholar 

  14. Umanath K, Palani Kumar K, and Selvamani S T, Compos Part B 53 (2013) 159.

    Article  CAS  Google Scholar 

  15. Kumar R, and Dhiman S, Mater Des 50 (2013) 351.

    Article  CAS  Google Scholar 

  16. Singh G, Karla C S, and Singh H, Int J Technol Res Eng 2 (2015) 853.

    Google Scholar 

  17. Altimkok N, Ozsert I, and Findik F, Acta Phys Pol A, 124 (2013) 11.

    Article  Google Scholar 

  18. Ramakoteswara Rao V, Ramanaiah N, and Sarkar M M M, J Mater Res Technol 5 (2016) 377.

    Article  Google Scholar 

  19. Reddy P S, Kesavan R, and Ramnath B V, Silicon, https://doi.org/10.1007/s12633-016-9479-8 (2017).

    Article  Google Scholar 

  20. Ganeshan V G, Def Technol XX (2015) 1.

    Google Scholar 

  21. Selvi S, and Rajasekar E, J Mech Sci Technol 29 (2015) 785.

    Article  Google Scholar 

  22. Sharma P, Khanduja D, and Sharma S, J Mater Res Technol 5 (2016) 29.

    Article  Google Scholar 

  23. Baradeswaran A, Vettivel S C, Perumal A E, Selvakumar N, and Issac R F, Mater Des 63 (2014) 620.

    Article  CAS  Google Scholar 

  24. Hemanth Kumar T R, Swami R P, Shekar C, Indian J Eng Mater Sci 20 (2013) 329.

    Google Scholar 

  25. Pradeep S, Dinesh K, and Sharma S, Mater Res Technol 5 (2016) 29.

    Article  Google Scholar 

  26. Zitoun E, and Reddy A C, in 6th International Conference on Materials and Manufacturing Processes, Hyderabad, India (2008), p 115.

  27. Thandalam S K, Ramanathan S, and Sundarrajan S, J Mater Res Technol 4 (2015) 333.

    Article  CAS  Google Scholar 

  28. Canakci A, and Arslan F, Int J Adv Manuf Technol 63 (2012) 785.

    Article  Google Scholar 

  29. Pramanik A, Trans Nonferrous Metals Soc China 26 (2016) 348.

    Article  CAS  Google Scholar 

  30. Suresh P, Marimuthu K, Ranganathan S, and Rajmohan T, Trans Nonferrous Metals Soc China 24 (2014) 2805.

    Article  CAS  Google Scholar 

  31. Rajmohan T, Palanikumar K, and Prakash S, Compos Part B Eng 50 (2013) 297.

    Article  Google Scholar 

  32. Kumar V, and Ramanujam R, Int J Innov Sci Eng Technol 2 (2015) 288.

    Google Scholar 

  33. Raju R S S, and Rao G S, Tribol India 39 (2017) 364.

    Article  Google Scholar 

  34. Dewangan S, Gangopadhyay S, and Biswas C K, Eng Sci Technol Int J 18 (2015) 361.

    Article  Google Scholar 

  35. Pratihar D K, Soft Computing: Fundamentals and Applications, Alpha Science International Limited, Oxford (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangadhara Rao Ponugoti.

Appendix

Appendix

Experiment no.

%Tungsten carbide (WC)

Load (N)

Sliding distance (m)

Sliding velocity (m/s)

As casted

Wear loss

COF

1

1

10

500

1

0.036

0.410

2

3

10

500

1

0.005

0.443

3

1

30

500

1

0.083

0.399

4

3

30

500

1

0.051

0.485

5

1

10

2500

1

0.084

0.420

6

3

10

2500

1

0.056

0.413

7

1

30

2500

1

0.125

0.329

8

3

30

2500

1

0.095

0.363

9

1

10

500

3

0.086

0.353

10

3

10

500

3

0.055

0.330

11

1

30

500

3

0.132

0.287

12

3

30

500

3

0.097

0.300

13

1

10

2500

3

0.133

0.510

14

3

10

2500

3

0.105

0.503

15

1

30

2500

3

0.185

0.354

16

3

30

2500

3

0.164

0.362

17

2

20

1500

2

0.090

0.404

18

2

20

1500

2

0.070

0.410

19

2

20

1500

2

0.075

0.390

20

2

20

1500

2

0.085

0.380

21

1

20

1500

2

0.090

0.378

22

3

20

1500

2

0.068

0.421

23

2

10

1500

2

0.051

0.418

24

2

30

1500

2

0.110

0.389

25

2

20

500

2

0.049

0.433

26

2

20

2500

2

0.090

0.441

27

2

20

1500

1

0.351

0.420

28

2

20

1500

3

0.399

0.385

29

2

20

1500

2

0.143

0.393

30

2

20

1500

2

0.151

0.390

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponugoti, G., Alluru, G.K. & Vundavilli, P.R. Response Surface Methodology Based Modelling of Friction–Wear Behaviour of Al6061/9%Gr/WC MMCs and Its Optimization Using Fuzzy GRA. Trans Indian Inst Met 71, 2465–2478 (2018). https://doi.org/10.1007/s12666-018-1377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1377-x

Keywords

Navigation