We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Identification of above-zone pressure perturbations caused by leakage from those induced by deformation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Pressure changes in the above zone, i.e., the overlying aquifer of an injection zone separated by a sealing caprock, are usually attributed to leakage through wells. However, pressure changes can be induced geomechanically due to rock deformation without any hydraulic connection between the injection zone and the above zone where the pressure change is observed. To account for these two causes of pressure change in the above zone, we develop an analytical solution to evaluate the deformation-induced pressure changes and we derive an asymptotic analytical solution for pressure perturbations caused by leaking wells. The analytical models compare well with available numerical/analytical solutions. Using the analytical solutions for the deformation- and leakage-induced pressure changes, we propose a graphical diagnostic plot to determine the cause of pressure change. Considering that the pressure change is caused by leakage, we then use the asymptotic solution to develop an easy-to-use fully graphical methodology to characterize leaking wells. This methodology improves a previous analysis methodology that was based on an inverse modeling algorithm that can be highly instable and computationally expensive. Based on the graphical method presented here, the slopes and intercepts of the proposed line-fitted graphs are used to determine the leak location and transmissibility. We apply the graphical method to an example problem to illustrate its application procedure and effectiveness in differentiating deformation-induced pressure changes from leaking wells. Overall, the diagnostic plot proposed here proves to be useful to determine the cause of the above-zone pressure change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Avci CB (1994) Evaluation of flow leakage through abandoned wells and boreholes. Water Resour Res 30:2565–2578

    Article  Google Scholar 

  • Bear J (1972) Dynamics of Fluids in Porous Media. Elsevier, New York

    Google Scholar 

  • Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3:181–194

    Article  Google Scholar 

  • Bourdet D (2002) Well test analysis: the use of advanced interpretation models. Elsevier Science, Amsterdam

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Univ. Press, London

    Google Scholar 

  • Chabora ER, Benson SM (2009) Brine displacement and leakage detection using pressure measurements in aquifers overlying CO2 storage reservoirs. Energy Procedia 1:2405–2412. doi:10.1016/j.egypro.2009.01.313

    Article  Google Scholar 

  • Chang KW, Hesse MA, Nicot J-P (2013) Reduction of lateral pressure propagation due to dissipation into ambient mudrocks during geological carbon dioxide storage. Water Resour Res. doi:10.1002/wrcr.20197

    Google Scholar 

  • Cihan A, Zhou Q, Birkholzer JT (2011) Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered-aquifer systems. Water Resour Res 47:W10504. doi:10.1029/2011wr010721

    Google Scholar 

  • Cooper H, Jacob C (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27:526–534

    Article  Google Scholar 

  • Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720

    Article  Google Scholar 

  • Hsieh PA (1996) Deformation-induced changes in hydraulic head during ground-water withdrawal. Ground Water 34:1082–1089. doi:10.1111/j.1745-6584.1996.tb02174.x

    Article  Google Scholar 

  • Jaeger JC (1943) Heat flow in the region bounded internally by a circular cylinder. Proc R Soc Edinburgh 61:223–229

    Google Scholar 

  • Javandel I, Tsang CF, Witherspoon PA, Morganwalp D (1988) Hydrologic detection of abandoned wells near proposed injection wells for hazardous waste disposal. Water Resour Res 24:261–270

    Article  Google Scholar 

  • Jung YJ, Zhou QL, Birkholzer JT (2013) Early detection of brine and CO2 leakage through abandoned wells using pressure and surface-deformation monitoring data: concept and demonstration. Adv Water Resour 62:555–569. doi:10.1016/j.advwatres.2013.06.008

    Article  Google Scholar 

  • Kang M, Nordbotten JM, Doster F, Celia MA (2014) Analytical solutions for two- phase subsurface flow to a leaky fault considering vertical flow effects and fault properties. Water Resour Res 50:3536–3552. doi:10.1002/2013wr014628

    Article  Google Scholar 

  • Kim JM, Parizek RR (1997) Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system. J Hydrol 202:231–243. doi:10.1016/S0022-1694(97)00067-X

    Article  Google Scholar 

  • Mathias SA, Hardisty PE, Trudell MR, Zimmerman RW (2009) Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp Porous Media 79:265–284. doi:10.1007/s11242-008-9316-7

    Article  Google Scholar 

  • Mathias SA, de Miguel GJGM, Thatcher KE, Zimmerman RW (2011) Pressure buildup during CO2 injection into a closed brine aquifer. Transp Porous Media 89:383–397. doi:10.1007/s11242-011-9776-z

    Article  Google Scholar 

  • Meckel TA, Zeidouni M, Hovorka SD, Hosseini SA (2013) Assessing sensitivity to well leakage from three years of continuous reservoir pressure monitoring during CO2 injection at Cranfield, MS, USA. Int J Greenh Gas Control 18:439–448. doi:10.1016/j.ijggc.2013.01.019

    Article  Google Scholar 

  • Nicot JP (2009) A survey of oil and gas wells in the Texas Gulf Coast, USA, and implications for geological sequestration of CO2. Environ Geol 57:1625–1638. doi:10.1007/s00254-008-1444-4

    Article  Google Scholar 

  • Nordbotten JM, Celia MA, Bachu S (2004) Analytical solutions for leakage rates through abandoned wells. Water Resour Res 40

  • Nordbotten JM, Celia MA, Bachu S, Dahle HK (2005) Semianalytical solution for CO2 leakage through an abandoned well. Environ Sci Technol 39:602–611

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. B Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Olivella S, Carrera J, Gens A, Alonso EE (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293. doi:10.1007/BF00613282

    Article  Google Scholar 

  • Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13:87–112. doi:10.1108/02644409610151575

    Article  Google Scholar 

  • Pruess K (2011) Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and subcritical conditions, and phase change between liquid and gaseous CO2. Greenh Gases Sci Technol 1:237–247. doi:10.1002/ghg.24

    Google Scholar 

  • Ritchie RH, Sakakura AY (1956) Asymptotic expansions of solutions of the heat conduction equation in internally bounded cylindrical geometry. Appl Phys 27:1453–1459

    Article  Google Scholar 

  • Rodrigues JD (1983) The Noordbergum effect and characterization of aquitards at the Rio-Maior mining project. Ground Water 21:200–207. doi:10.1111/j.1745-6584.1983.tb00714.x

    Article  Google Scholar 

  • Rutqvist J, Vasco DW, Myer L (2010) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenh Gas Control 4:225–230. doi:10.1016/j.ijggc.2009.10.017

    Article  Google Scholar 

  • Sabet MA (1991) Well test analysis. Gulf Professional Publishing, Texas

    Google Scholar 

  • Spivey JP, Lee WJ (2013) Applied Well Test Interpretation. SPE Textbook Series, Richardson, Texas. ISBN 978-1-61399-307-1

  • Sun AY, Zeidouni M, Nicot J-P, Lu Z, Zhang D (2013) Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method. Adv Water Resour 56:49–60. doi:10.1016/j.advwatres.2012.11.017

    Article  Google Scholar 

  • Verruijt A (1969) Elastic storage of aquifers. In: de Wiest RJM (ed) Flow through porous media. Academic Press, New York

    Google Scholar 

  • Vilarrasa V, Carrera J (2015) Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc Natl Acad Sci USA 112:5938–5943

    Article  Google Scholar 

  • Vilarrasa V, Bolster D, Dentz M, Olivella S, Carrera J (2010a) Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp Porous Media 85:619–639. doi:10.1007/s11242-010-9582-z

    Article  Google Scholar 

  • Vilarrasa V, Bolster D, Olivella S, Carrera J (2010b) Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers. Int J Greenh Gas Control 4:910–919. doi:10.1016/j.ijggc.2010.06.006

    Article  Google Scholar 

  • Vilarrasa V, Carrera J, Olivella S (2013) Hydromechanical characterization of CO2 injection sites. Int J Greenh Gas Control 19:665–677. doi:10.1016/j.ijggc.2012.11.014

    Article  Google Scholar 

  • Wang Z, Small MJ (2014) A Bayesian approach to CO 2 leakage detection at saline sequestration sites using pressure measurements. Int J Greenh Gas Control 30:188–196

    Article  Google Scholar 

  • Yeh H-D, Wang C-T (2007) Large-time solutions for groundwater flow problems using the relationship of small p versus large t. Water Resour Res 43:W06502. doi:10.1029/2006wr005472

    Google Scholar 

  • Zeidouni M (2012) Analytical model of leakage through fault to overlying formations. Water Resour Res 48:W00N02. doi:10.1029/2012WR012582

    Article  Google Scholar 

  • Zeidouni M (2014) Analytical model of well leakage pressure perturbations in a closed aquifer system. Adv Water Resour 69:13–22. doi:10.1016/j.advwatres.2014.03.004

    Article  Google Scholar 

  • Zeidouni M, Pooladi-Darvish M (2012a) Leakage characterization through above-zone pressure monitoring: 1—Inversion approach. J Pet Sci Eng 98–99:95–106. doi:10.1016/j.petrol.2012.09.006

    Article  Google Scholar 

  • Zeidouni M, Pooladi-Darvish M (2012b) Leakage characterization through above-zone pressure monitoring: 2—Design considerations with application to CO2 storage in saline aquifers. J Pet Sci Eng 98–99:69–82. doi:10.1016/j.petrol.2012.09.005

    Article  Google Scholar 

  • Zeidouni M, Pooladi-Darvish M, Keith DW (2011) Analytical models for determining pressure change in an overlying aquifer due to leakage. Energy Procedia 4:3833–3840. doi:10.1016/j.egypro.2011.02.319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zeidouni.

Appendix: derivation of asymptotic solution

Appendix: derivation of asymptotic solution

For late-time period: s→0, and we can make the following approximations (Abramowitz and Stegun 1970)

$$K_{0} \left( x \right) \approx - \gamma - \ln (x/2)$$
(33)

on the basis of which, Eq. (16) simplifies to

$$\bar{q}_{lD} = \frac{{ - \frac{{\gamma + \ln (\sqrt s R_{D} /2)}}{s}}}{{ - \frac{{\gamma + \ln (\sqrt s r_{lD} /2)}}{1} - \frac{{\gamma + \ln \left( {\sqrt {\frac{s}{{\eta_{D} }}} r_{lD} /2} \right)}}{{T_{D} }} + \frac{1}{\alpha }}} .$$
(34)

Further rearrangement to make the Laplace variable appear only in the denominator yields

$$\bar{q}_{lD} = \frac{{T_{D} }}{{s\left( {T_{D} + 1} \right)}}\left( {1 + \frac{{\ln \left( {\frac{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} R_{D}^{2} }}{{r_{lD}^{2} }}} \right)}}{{\ln \left( {\frac{{e^{2\gamma } r_{lD}^{2} }}{4}\frac{1}{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}s} \right)}}} \right) ,$$
(35)

or

$$\bar{q}_{lD} = \frac{1}{{\left( {1 + 1/T_{D} } \right)}}\left( {\frac{1}{s} - \ln \left( {\frac{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} R_{D}^{2} }}{{r_{lD}^{2} }}} \right)\left( {\frac{ - 1}{{s\ln \left( {\frac{{e^{2\gamma } r_{lD}^{2} }}{4}\frac{1}{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}s} \right)}}} \right)} \right)$$
(36)

The inverse of Eq. (36) is

$$q_{lD} = \frac{1}{{\left( {1 + 1/T_{D} } \right)}}\left( {1 - \ln \left( {\frac{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} R_{D}^{2} }}{{r_{lD}^{2} }}} \right)L^{ - 1} \left( {\frac{ - 1}{{s\ln \left( {\frac{{e^{2\gamma } r_{lD}^{2} }}{4}\frac{1}{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}s} \right)}}} \right)} \right)$$
(37)

The last term in the RHS of Eq. (37) should be evaluated in the real-time domain. Yeh and Wang (2007) present a late-time approximation of the Laplace inverse of 1/(s ln (s/κ)) in calculating wellbore flux for the constant pressure well test problem. The inverse is based on truncating four terms of the expansion series provided by Ritchie and Sakakura (1956) for the Laplace inverse of 1/(s ln (s/κ)). Three-term and two-term approximations of the inversion were presented by Jaeger (1943) and Carslaw and Jaeger (1959), respectively. The following is obtained for the last term in the RHS of Eq. (37), considering a three-term truncated series

$$L^{ - 1} \left\{ {\frac{ - 1}{{s\ln \left( {\frac{{e^{2\gamma } r_{lD}^{2} }}{4}\frac{1}{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}s} \right)}}} \right\} = \frac{1}{{\ln \left( {\frac{{4\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}{{e^{2\gamma } r_{lD}^{2} }}t_{D} } \right)}} - \frac{\gamma }{{\left( {\ln \left( {\frac{{4\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}{{e^{2\gamma } r_{lD}^{2} }}t_{D} } \right)} \right)^{2} }} + \frac{{\gamma^{2} - \frac{{\pi^{2} }}{6}}}{{\left( {\ln \left( {\frac{{4\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}{{e^{2\gamma } r_{lD}^{2} }}t_{D} } \right)} \right)^{3} }}$$
(38)

Using Eqs. (15), (33) and (36), we obtain

$$p_{mD} = \frac{1}{{2\left( {1 + T_{D} } \right)}}\left( \begin{aligned} \ln \left( {t_{D} } \right) - \gamma - \ln \left( {\frac{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} R_{D}^{2} \rho_{D}^{2} }}{{4\eta_{D} r_{lD}^{2} }}} \right) + \ln \left( {\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} \frac{{R_{D}^{2} }}{{r_{lD}^{2} }}} \right) \hfill \\ \ln \left( {\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} \frac{{\rho_{D}^{2} }}{{\eta_{D} r_{lD}^{2} }}} \right)L^{ - 1} \left( {\frac{ - 1}{{s\ln \left( {\frac{{e^{2\gamma } r_{lD}^{2} }}{4}\frac{1}{{\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} }}s} \right)}}} \right) \hfill \\ \end{aligned} \right) .$$
(39)

Eq. (39) can also be written as

$$p_{mD} = \frac{1}{{\left( {1 + T_{D} } \right)}}\left( {\frac{ - \gamma }{2} - \frac{1}{2}\ln \left( {\frac{{R_{D}^{2} }}{{4t_{D} }}} \right)} \right) - \frac{{q_{lD} }}{{2T_{D} }}\ln \left( {\eta_{D}^{{\frac{1}{{\left( {T_{D} + 1} \right)}}}} e^{{\frac{{2T_{D} }}{{\alpha \left( {T_{D} + 1} \right)}}}} \frac{{\rho_{D}^{2} }}{{\eta_{D} r_{lD}^{2} }}} \right) .$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidouni, M., Vilarrasa, V. Identification of above-zone pressure perturbations caused by leakage from those induced by deformation. Environ Earth Sci 75, 1271 (2016). https://doi.org/10.1007/s12665-016-6090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6090-7

Keywords

Navigation