Skip to main content

Advertisement

Log in

Valorization of Waste Apple Pomace for Production of Platform Biochemicals: A Multi-Objective Optimization Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In line with the prevailing global interest in value extraction from biomass waste streams, the current study explored the technical feasibility of valorizing waste apple pomace (WAP) to produce high-value biochemicals of 5-hydroxymethylfurfural (HMF), lactic acid, and xylitol. Technical feasibility was demonstrated via a process simulation study that employed experimental data and incorporated previously reported approaches in the literature. Economic and environmental performances of the WAP based biorefinery were assessed using the internal rate of return (IRR) and the mass of greenhouse gas emission per unit mass of feedstock (GF) as sufficient performance indicators, respectively. The study was able to show that as the IRR value increased (better economic performance), the GF increased (poorer environmental performance). This suggested that the determination of the optimal condition of the environmental and economic performances would require the imposition of trade-offs. The preferred trade-off condition for enhanced economic and environmental performances was subsequently determined via multi-objective optimization, with a Pareto front containing non-dominated equally optimal solutions subsequently developed. The present work, therefore, provides an in-depth performance analysis of WAP based biorefinery as a waste management strategy. Notably, the proposed strategy of multiple product generation from biomass may be extended to other organic waste based biorefineries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fernando, S., et al.: Biorefineries: current status, challenges, and future direction. Energy Fuels 20(4), 1727–1737 (2006)

    Google Scholar 

  2. Okoro, O.V., Sun, Z., Birch, J.: Meat processing waste as a potential feedstock for biochemicals and biofuels—A review of possible conversion technologies. J. Clean. Prod. 142, 1583–1608 (2017)

    Google Scholar 

  3. Hingsamer, M., Jungmeier, G.: Chapter Five: biorefineries. In: Lago, C., Caldés, N., Lechón, Y. (eds.) The Role of Bioenergy in the Bioeconomy, pp. 179–222. Academic Press, London (2019)

    Google Scholar 

  4. Okoro, O.V., Sun, Z.: The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate biomass. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00672-7

    Article  Google Scholar 

  5. Kosseva, M.R.: Chapter 3: Sources, characterization, and composition of food industry wastes. In: Kosseva, M.R., Webb, C. (eds.) Food Industry Wastes, pp. 37–60. Academic Press, San Diego (2013)

    Google Scholar 

  6. Kruczek, M., Drygaś, B., Habryka, C.: Pomace in fruit industry and their contemporary potential application. World Sci. News 48, 259–265 (2016)

    Google Scholar 

  7. Gustafsson, J., et al.: Development of Bio-Based Films and 3D Objects from Apple Pomace. Polymers 11(2), 289 (2019)

    Google Scholar 

  8. Carunchia, M., Wang, L., Han, J.H.: 19: the use of antioxidants in the preservation of snack foods. In: Shahidi, F. (ed.) Handbook of Antioxidants for Food Preservation, pp. 447–474. Woodhead Publishing, Cambridge (2015)

    Google Scholar 

  9. Koen, v.G., Apple production in Belgium from 2005/06 to 2019/2020. 2021, Statista. source. https://www.statista.com/statistics/628823/apple-production-in-belgium/. Accessed 12 Jan 2021

  10. Shalini, R., Gupta, D.K.: Utilization of pomace from apple processing industries: a review. J. Food Sci. Technol. 47(4), 365–371 (2010)

    Google Scholar 

  11. Yates, M., et al.: Multivalorization of apple pomace towards materials and chemicals Waste to wealth. J. Clean Prod. 143, 847–853 (2017)

    Google Scholar 

  12. Bhushan, S., Gupta, M.: Apple pomace: source of dietary fibre and antioxidant for food fortification. In: Preedy, V.R., Srirajaskanthan, R., Patel, V.B. (eds.) Handbook of Food Fortification and Health: From Concepts to Public Health Applications, vol. 2, pp. 21–27. Springer, New York (2013)

    Google Scholar 

  13. Lyu, F., et al.: Apple Pomace as a functional and healthy ingredient in food products: a review. Processes 8(3), 319 (2020)

    MathSciNet  Google Scholar 

  14. Antonic, B., et al.: Apple pomace as food fortification ingredient: a systematic review and meta-analysis. J. Food Sci. 85(10), 2977–2985 (2020)

    Google Scholar 

  15. Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K.: Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31(6), 877–902 (2013)

    Google Scholar 

  16. Dusselier, M., et al.: Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal. 3(8), 1786–1800 (2013)

    Google Scholar 

  17. Dagher, S.F., et al.: Chapter 5: cell immobilization for production of lactic acid: biofilms do it naturally. In: Advances in Applied Microbiology, pp. 113–148. Academic Press (2010)

    Google Scholar 

  18. E4tech, UK Top Bio-based Chemicals Opportunitie. London, E4tech (2017)

  19. BusinessWire, Global Lactic Acid Market 2017–2025 - Growth Trends, Key Players, Competitive Strategies and Forecasts - Research and Markets (2017). [online] Available: https://www.businesswire.com/news/home/20170621005594/en/Global-Lactic-Acid-Market-2017-2025---Growth-Trends-Key-Players-Competitive-Strategies-and-Forecasts---Research-and-Markets.  Accessed 20 Feb 2021.

  20. Azaizeh, H., et al.: Production of lactic Acid FROM carob, banana and sugarcane lignocellulose biomass. Molecules 25(13), 2956 (2020)

    Google Scholar 

  21. Román-Leshkov, Y., Chheda, J.N., Dumesic, J.A.: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782), 1933–1937 (2006)

    Google Scholar 

  22. Zhou, C., et al.: Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: reaction kinetics and mechanism. Egypt. J. Pet. 26(2), 477–487 (2017)

    Google Scholar 

  23. Motagamwala, A.H., et al.: Toward biomass-derived renewable plastics: Production of 2, 5-furandicarboxylic acid from fructose. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aap9722

    Article  Google Scholar 

  24. Delgado Arcaño, Y., et al.: Xylitol: a review on the progress and challenges of its production by chemical route. Catal. Today 344, 2–14 (2020)

    Google Scholar 

  25. Venkateswar Rao, L., et al.: Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour. Technol. 213, 299–310 (2016)

    Google Scholar 

  26. Industryexperts.: Xylitol – A Global Market Overview (2017). [online] Available: https://industry-experts.com/verticals/food-and-beverage/xylitol-a-global-market-overview. Accessed 20 Dec 2020

  27. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Elliot, D., Lasure, L., Jones, S.: Results of screening for potential candidates from sugars and synthesis gas. Top Value Added Chem. Biomass. 1, 76 (2004)

    Google Scholar 

  28. Alnur, A., Sakinah, M., Mustafa, A.B., Kamarudin, H., Norazian, M.N.: Simulation of xylitol production: a review. Austr. J. Basic Appl. Sci. 7(5), 366–372 (2013)

    Google Scholar 

  29. Schefflan, R.: Teach Yourself the Basics of Aspen Plus. Wiley Online Library (2011)

  30. Okoro, O.V., Sun, Z., Birch, J.: Techno-economic assessment of a scaled-up meat waste biorefinery system: a simulation study. Materials 12(7), 1030 (2019)

    Google Scholar 

  31. Marcotullio, G.: The chemistry and technology of furfural production in modern lignocellulose-feedstock biorefineries. (2011). Delft. TU Delft  [online]. Available: http://resolver.tudelft.nl/uuid:a307ecb3-513a-4f57-b519-873a73403cfd. Accessed 23 Jan 2021.

  32. Peña-Tejedor, S., et al.: Vapor–liquid equilibria and excess volumes of the binary systems ethanol+ ethyl lactate, isopropanol+ isopropyl lactate and n-butanol+ n-butyl lactate at 101.325 kPa. Fluid Ph. Equilib. (2005). https://doi.org/10.1016/j.fluid.2005.02.015

    Article  Google Scholar 

  33. Deterre, S., et al.: Vapor–liquid equilibria measurements of bitter orange aroma compounds highly diluted in boiling hydro-alcoholic solutions at 101.3 kPa. J. Chem. Eng. Data (2012). https://doi.org/10.1021/je3004854

    Article  Google Scholar 

  34. Vu, D.T., et al.: Vapor−liquid equilibria in the systems ethyl lactate+ ethanol and ethyl lactate+ water. J. Chem. Eng. Data 51(4), 1220–1225 (2006)

    Google Scholar 

  35. Petersen, A.M., et al.: Evaluating refinery configurations for deriving sustainable aviation fuel from ethanol or syncrude. Fuel Process. Technol. 219, 106879 (2021)

    Google Scholar 

  36. ASPEN-plus, Aspen Plus User Guide. 2000, ASPEN technology incorporated: Cambridge.

  37. Alibaba.: Mechanical Dewatering device (2021). Available: https://www.alibaba.com/product-detail/Dewatering-Dewatering-Machine-NORSEN-Vehicular-Sludge_1600051333912.html?spm=a2700.galleryofferlist.normal_offer.d_title.5c49383dKmOCni&s=p. Accessed 12 Feb 2021

  38. Zimmer, E., Optimal use of resources and energy during fruit juice extraction. 2017, Fruit Processing: Nlederwenlngen.

  39. Okoro, O.V., Shavandi, A.: An assessment of the utilization of waste apple slurry in bio-succinic acid and bioenergy production. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03235-z

  40. Kim, D.: Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules (2018). https://doi.org/10.3390/molecules23020309

    Article  Google Scholar 

  41. Pérez, J.A., et al.: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17), 3640–3647 (2008)

    Google Scholar 

  42. Hijosa-Valsero, M., Paniagua-García, A.I., Díez-Antolínez, R.: Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl. Microbiol. Biotechnol. 101(21), 8041–8052 (2017)

    Google Scholar 

  43. Iyer, P.V., Thomas, S., Lee Y.Y.: High-yield fermentation of pentoses into lactic acid. In: Finkelstein M., Davison B.H. (eds) Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ (2000). https://doi.org/10.1007/978-1-4612-1392-5_51

  44. Su, C.-Y., et al.: Control of highly interconnected reactive distillation processes: purification of raw lactic acid by esterification and hydrolysis. Ind. Eng. Chem. Res. 54(27), 6932–6940 (2015)

    Google Scholar 

  45. Kamble, S.P., et al.: Purification of lactic acid via esterification of lactic acid using a packed column, followed by hydrolysis of methyl lactate using three continuously stirred tank reactors (cstrs) in series: a continuous pilot plant study. Ind. Eng. Chem. Res. 51(4), 1506–1514 (2012)

    Google Scholar 

  46. Lee, H., Development of lactic and succinic acid biorefinery configurations for integration into a thermomechanical pulp mill. 2015, École Polytechnique de Montréal.

  47. Kumar, R., Nanavati, H., Noronha, S.B., Mahajani, S.M.: A continuous process for the recovery of lactic acid by reactive distillation. J. Chem. Technol. Biotechnol. 81(11), 1767–1777 (2006)

    Google Scholar 

  48. Melaja, A., Hämäläinen, L.: US-patent, 4,008,285: Process for making xylitol. p. 285 (1977)

  49. Mountraki, A.D., Koutsospyros, K.R., Mlayah, B.B., Kokossis, A.C.: Selection of biorefinery routes: the case of xylitol and its integration with an organosolv process. Waste Biomass Valor. 8(7), 2283–2300 (2017)

    Google Scholar 

  50. Mikkola, J.P., Salmi, T., Sjöholm, R.: Modelling of kinetics and mass transfer in the hydrogenation of xylose over Raney nickel catalyst. J. Chem. Technol. Biotechnol. 74(7), 655–662 (1999)

    Google Scholar 

  51. Martínez, E.A., Giulietti, M., Almeida, J.B., Derenzo, S., Almeida Felipe, M.D.: Batch cooling crystallization of xylitol produced by biotechnological route. J. Chem. Technol. Biotechnol. 4(3), 376–381 (2009)

    Google Scholar 

  52. Wang, Z., et al.: Measurement and correlation of solubility of xylitol in binary water+ethanol solvent mixtures between 278.00 K and 323.00K. Korean J. Chem. Eng. 30(4), 931–936 (2013)

    Google Scholar 

  53. Kougioumtzis, M.A., Marianou, A., Atsonios, K., Michailof, C., Nikolopoulos, N., Koukouzas, N., Kakaras, E.: Production of 5-HMF from cellulosic biomass: Experimental results and integrated process simulation. Waste Biomass Valor. 9(12), 2433–2445 (2018)

    Google Scholar 

  54. Santiago, B.S., Guirardello, R.: 5-hydroxymethylfurfural production in a lignocellulosic biorefinery: techno-economic analysis. Chem. Eng. Transact. 80, 139–144 (2020)

    Google Scholar 

  55. Petersen, A.M., et al.: Evaluation of biorefining scenarios for advanced fuels production from triticale grain. Energy Fuels 34(9), 11003–11013 (2020)

    Google Scholar 

  56. Okoro, O.V., Sun, Z., Birch, J.: Catalyst-free biodiesel production methods: a comparative technical and environmental evaluation. Sustainability 10(1), 127 (2018)

    Google Scholar 

  57. Okoro, O.V., Faloye, F.D.: Comparative assessment of thermo-syngas fermentative and liquefaction technologies as waste plastics repurposing strategies. AgriEngineering 2(3), 378–392 (2020)

    Google Scholar 

  58. Okoro, O.V., Banson, A.N., Zhang, H.: Circumventing unintended impacts of waste N95 facemask generated during the COVID-19 pandemic: a conceptual design approach. ChemEngineering 4(3), 54 (2020)

    Google Scholar 

  59. Kumar, D., Long, S.P., Singh, V.: Biorefinery for combined production of jet fuel and ethanol from lipid-producing sugarcane: a techno-economic evaluation. Gcb Bioenergy 10(2), 92–107 (2018)

    Google Scholar 

  60. García Haro, P.: Thermochemical Biorefineries and based on DME as platform chemical: conceptual design and technoeconomic assessment. Biorrefinerías Termoquímicas basadas en DME como intermediario: Diseño conceptual y análisis tecno-económico. 2013. Univesity of Sevilla, Spain

  61. Towler, G., Sinnott, R.: Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier, Amsterdam (2008)

    Google Scholar 

  62. Lange, J.P.: Fuels and chemicals manufacturing; guidelines for understanding and minimizing the production costs. CATTECH 5, 82–95 (2001). https://doi.org/10.1023/A:1011944622328

  63. Christensen, P., et al.: Cost Estimate Classification system-as applied in engineering, procurement, and construction for the process industries (2005).  [Online]. Available: https://www.costengineering.eu/Downloads/articles/AACE_CLASSIFICATION_SYSTEM.pdf. Accessed 1 Feb 2021

  64. Chemical-Engineering, CEPCI (2021) [Online]. Available: https://www.chemengonline.com/tag/cepci/. Accessed 2 Feb 2021

  65. Spath, P., et al., Biomass to hydrogen production detailed design and economics utilizing the Battelle Columbus Laboratory indirectly-heated gasifier. 2005, National Renewable Energy Lab., Golden, CO (US).

  66. Doka G.: Life Cycle Inventories of Waste Treatment Services. ecoinvent report No. 13. Swiss Centre for Life Cycle Inventories, Dübendorf (2003)

  67. Hedemann J., König U.: Technical Documentation of the ecoinvent Database. Final report ecoinvent data v2.0, No. 4. Swiss Centre for Life Cycle Inventories. Dübendorf, CH (2007)

  68. Forest-research: Carbon emissions of different fuels (2021). [Online]. Available: https://www.forestresearch.gov.uk/tools-and-resources/biomass-energy-resources/reference-biomass/facts-figures/carbon-emissions-of-different-fuels/. Accessed 23 Feb 2021

  69. CES-MED: Technical Annex to the SEAP template instructions document: The Emission Factors. Cleaner energy saving Mediterranean cities  [Online] (2015). Available: https://www.ces-med.eu/publications/technical-annex-seap. Accessed 9 Feb 2021

  70. Rangaiah, G.P., Feng, Z., Hoadley, A.F.J.P.: Multi-objective optimization applications in chemical process engineering: tutorial and review. Process. 8(5), 508 (2020)

    Google Scholar 

  71. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  72. Chaudhari, P., Gupta, S.K.: Multiobjective optimization of a fixed bed maleic anhydride reactor using an improved biomimetic adaptation of NSGA-II. Ind. Eng. Chem. Res. 51(8), 3279–3294 (2012)

    Google Scholar 

  73. Deb K., Agrawal S., Pratap A., Meyarivan T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M. et al. (eds) Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

  74. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34. Springer (2011)

    Google Scholar 

  75. SolverXL: SolveXL - Genetic Algorithm Optimization add-in for Microsoft Excel. [Online] (2013). Available: https://www.solvexl.com/. Accessed 10 Feb 2021

  76. Gassara, F., et al.: Pomace waste management scenarios in Québec—impact on greenhouse gas emissions. J. Hazard. Mater. 192(3), 1178–1185 (2011)

    Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial support of Wallonia-Brussels International via the Wallonie-Bruxelles International (WBI) excellence Postdoctoral fellowship. Materne company is also acknowledged for their expert information input.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oseweuba Valentine Okoro or Amin Shavandi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okoro, O.V., Nie, L., Hobbi, P. et al. Valorization of Waste Apple Pomace for Production of Platform Biochemicals: A Multi-Objective Optimization Study. Waste Biomass Valor 12, 6887–6901 (2021). https://doi.org/10.1007/s12649-021-01487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01487-x

Keywords

Navigation