Skip to main content

Advertisement

Log in

Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P < 0.001) at 3 h. The uptake of 3H-aminochrome into U373MG cells was significantly reduced in the presence of 2 µM nomifensine (P < 0.001) 100 µM imipramine (P < 0.001) and 50 mM dopamine (P < 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P < 0.001) when the cells were pretreated with 50 µM aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of 14C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castaneda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage necrosis and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  • Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324:25–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee R, Vitvitsky V, Garg SK (2008) The undertow of sulphur metabolism on glutamatergic neurotransmission. Trends Biochem Sci 33:413–419

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605

    Article  CAS  PubMed  Google Scholar 

  • Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284:6476–6485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101:9103–9108

    Article  PubMed Central  PubMed  Google Scholar 

  • Carstam R, Brinck C, Hindemith-Augustsson A, Rorsman H, Rosengren E (1991) The neuromelanin of the human substantia nigra. Biochim Biophys Acta 1097:152–160

    Article  CAS  PubMed  Google Scholar 

  • Cheng FC, Kuo JS, Chia LG, Dryhurst G (1996) Elevated 5-S-cysteinyldopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the pathoetiology of Parkinson’s disease. J Neural Transm 103:433–446

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-a α-synuclein adduct. Science 294:1346–1349

    Article  CAS  PubMed  Google Scholar 

  • Dagnino-Subiabre A, Cassels BK, Baez S, Johansson AS, Mannervik B, Segura-Aguilar J (2000) Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones. Biochem Biophys Res Commun 274:32–36

    Article  CAS  PubMed  Google Scholar 

  • Dibenedetto D, Rossetti G, Caliandro R, Carloni P (2013) A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts. Biochemistry 52:6672–6683

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  CAS  PubMed  Google Scholar 

  • Ericson C, Georgievska B, Lundberg C (2005) Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson’s disease. Eur J Neurosci 22:2755–2764

    Article  PubMed  Google Scholar 

  • Gardaneh M, Gholami M, Maghsoudi N (2011) Synergy between glutathione peroxidase-1 and astrocyes growth factors protects dopaminergic neurons against 6-hydroxydopamine. Rejuvenation Res 14:195–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630

    Article  CAS  PubMed  Google Scholar 

  • Johansson A-S, Bolton-Grob R, Mannervik B (1999) Use of silent mutations in cDNA encoding human glutathione transferase M2-2 for optimized expression in escherichia coli. Protein Expr Purif 17:105–112

    Article  CAS  PubMed  Google Scholar 

  • Koh K, Lee K, Ahn JH, Kim S (2009) Human cytomegalovirus infection downregulates the expression of glial fibrillary acidic protein in human glioblastoma U373MG cells: identification of viral genes and protein domains involved. J Gen Virol 90:954–962

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Cazal M, Adjali O, Galéotti N, Poncet J, Jouin P, Homburger V, Bockaert J, Marin P (2003) Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome, J Biol Chem 278:24438–24448

    CAS  Google Scholar 

  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1159–1161

    Article  Google Scholar 

  • Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MB (1996) Dopamine 6-hydroxydopamine iron and dioxygen–their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1316:160–168

    Article  PubMed  Google Scholar 

  • Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 23:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Craig SJ, Sutherland TM, Board PG, Casarotto MG (2009) Transport of glutathione transferase-fold structured proteins into living cells. Biochim Biophys Acta 1788:676–685

    Article  CAS  PubMed  Google Scholar 

  • Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012a) Dopamine oxidation and autophagy, Parkinsons Dis. doi:10.1155/2012/920953

  • Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012b) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822:1125–1136

    Article  PubMed  Google Scholar 

  • Nehlig A, Coles JA (2007) Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55:1238–1250

    Article  PubMed  Google Scholar 

  • Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–22129

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin alpha- and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92

    Article  PubMed  Google Scholar 

  • Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pellerin L (2008) Brain energetics (thought needs food). Curr Opin Clin Nutr Metab Care 11:701–705

    Article  PubMed  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    Article  PubMed  Google Scholar 

  • Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63:247–253

    Article  CAS  PubMed  Google Scholar 

  • Safi R, Gardaneh M, Panahi Y, Maghsoudi N, Zaefizadeh M, Gharib E (2012) Optimized quantities of GDNF overexpressed by engineered astrocytes are critical for protection of neuroblastoma cells against 6-OHDA toxicity. J Mol Neurosci 46:654–665

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Bak LK, Sickmann HM, Sonnewald U, Waagepetersen HS (2007) Energy substrates to support glutamatergic and GABAergic synaptic function: role of glycogen glucose and lactate. Neurotox Res 12:263–268

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Baez S, Widersten M, Welch CJ, Mannervik B (1997) Human class Mu glutathione transferases in particular isoenzyme M2-2 catalyze detoxication of the dopamine metabolite aminochrome. J Biol Chem 272:5727–5731

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Metodiewa D, Welch CJ (1998) Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta 1381:1–6

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Shen XM, Xia B, Wrona MZ, Dryhurst G (1996) Synthesis redox properties in vivo formation and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine possible metabolites of relevance to Parkinson’s disease. Chem Res Toxicol 9:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Skindersoe ME, Rohde M, Kjaerulff S (2012) A novel and rapid apoptosis assay based on thiol redox status. Cytometry 81A:430–436

    Article  CAS  Google Scholar 

  • Strolin-Benedetti M, Dostert P, Tipton KF (1992) Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Dev Pharmacol Ther 18:191–200

    CAS  PubMed  Google Scholar 

  • Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch Pharmacol 366:620–623

    Article  CAS  PubMed  Google Scholar 

  • Trempe JF, Fon EA (2013) Structure and function of Parkin PINK1 and DJ-1 the three musketeers of neuroprotection. Front Neurol 19:438

    Google Scholar 

  • Tse DC, McCreery RL, Adams RN (1976) Potential oxidative pathways of brain catecholamines. J Med Chem 19:37–40

    Article  CAS  PubMed  Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  PubMed Central  PubMed  Google Scholar 

  • Westlund KN, Denne RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456

    Article  CAS  PubMed  Google Scholar 

  • Yang CZ, Zhao R, Dong Y, Chen XQ, Yu AC (2008) Astrocyte and neuron intone through glutamate. Neurochem Res 33:2480–2486

    Article  CAS  PubMed  Google Scholar 

  • Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine DOPA and 34-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZD, Lim TM (2009) Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res 43:417–430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by FONDECYT  1100165, 1061083 (JSA) 1120337 (IP) and by Grants (to B.M.) from the Swedish Research Council and the Swedish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, C., Huenchuguala, S., Muñoz, P. et al. Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity. Neurotox Res 27, 217–228 (2015). https://doi.org/10.1007/s12640-014-9500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9500-1

Keywords

Navigation