Skip to main content
Log in

Bacillus licheniformis Zhengchangsheng® Inhibits Obesity by Regulating the AMP-Activated Protein Kinase Signaling Pathway

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

As a metabolic syndrome, obesity has become a global public health problem. Bacillus licheniformis has been shown to inhibit obesity by regulating the gut microbiota, but the underlying mechanism of its therapeutic effect is still unknown. In this study, the anti-obesity mechanism of Bacillus licheniformis Zhengchangsheng® was investigated by examining a high-fat diet-induced obesity mouse model. Our results showed that Bacillus licheniformis Zhengchangsheng® significantly decreased body weight gain and fat accumulation, serum lipid profiles, and proinflammatory cytokine levels and improved glucose and lipid metabolism in obese mice. Furthermore, compared with those of high-fat diet-fed mice, Bacillus licheniformis Zhengchangsheng® treatment also inhibited nuclear factor-κB activation, increased phosphorylated AMP-activated protein kinase activation in the liver, and regulated the expression of genes associated with lipid metabolism. These results indicated that Bacillus licheniformis Zhengchangsheng®-induced obesity inhibition could occur by activating the AMP-activated protein kinase signaling pathway. Thus, our results suggested that Bacillus licheniformis Zhengchangsheng® has the potential to treat obesity and related metabolic diseases in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to them containing information that could compromise research participant privacies and consents.

References

  1. Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945):766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gu DF, Reynolds K, Wu XG, Chen F, Duan XF, Reynolds RF, Whelton PK, He J, Grp IC (2005) Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365(9468):1398–1405. https://doi.org/10.1016/S0140-6736(05)66375-1

    Article  PubMed  Google Scholar 

  3. Yu Y, Cai JJ, She ZG, Li HL (2019) Insights into the epidemiology, pathogenesis, and therapeutics of nonalcoholic fatty liver diseases. Adv Sci 6 (4). https://doi.org/10.1002/advs.201801585

  4. Tanaka N, Kimura T, Fujimori N, Nagaya T, Komatsu M, Tanaka E (2019) Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J Gastroenterol 25(2):163–177. https://doi.org/10.3748/wjg.v25.i2.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. https://doi.org/10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  6. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7(10):e47713. https://doi.org/10.1371/journal.pone.0047713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krentz AJ, Fujioka K, Hompesch M (2016) Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab 18(6):558–570. https://doi.org/10.1111/dom.12657

    Article  CAS  PubMed  Google Scholar 

  8. Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20(42):15632–15649. https://doi.org/10.3748/wjg.v20.i42.15632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Falcinelli S, Rodiles A, Hatef A, Picchietti S, Cossignani L, Merrifield DL, Unniappan S, Carnevali O (2018) Influence of probiotics administration on gut microbiota core: a review on the effects on appetite control, glucose, and lipid metabolism. J Clin Gastroenterol 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S50-S56. https://doi.org/10.1097/MCG.0000000000001064

  10. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53(2):599–606. https://doi.org/10.1007/s00394-013-0568-9

    Article  PubMed  Google Scholar 

  11. Shin JH, Nam MH, Lee H, Lee JS, Kim H, Chung MJ, Seo JG (2018) Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. Eur J Nutr 57(6):2081–2090. https://doi.org/10.1007/s00394-017-1481-4

    Article  CAS  PubMed  Google Scholar 

  12. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE 8(1):e54617. https://doi.org/10.1371/journal.pone.0054617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bagarolli RA, Tobar N, Oliveira AG, Araujo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  14. Heo J, Kim SK, Park KS, Jung HK, Kwon JG, Jang BI (2014) A double-blind, randomized, active drug comparative, parallel-group, multi-center clinical study to evaluate the safety and efficacy of probiotics (Bacillus licheniformis, Zhengchangsheng® capsule) in patients with diarrhea. Intest Res 12(3):236–244. https://doi.org/10.5217/ir.2014.12.3.236

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao GT, Dai B, Wang KL, Yan Y, Xu YL, Wang YX, Yang CM (2019) Bacillus licheniformis, a potential probiotic, inhibits obesity by modulating colonic microflora in C57BL/6J mice model. J Appl Microbiol 127(3):880–888. https://doi.org/10.1111/jam.14352

    Article  CAS  PubMed  Google Scholar 

  16. Li YY, Liu M, Liu H, Wei  XQ, Su XY, Li M, Yuan JL (2020) Oral supplements of combined Bacillus licheniformis Zhengchangsheng® and xylooligosaccharides improve high-fat diet-induced obesity and modulate the gut microbiota in rats Biomed Res Int 2020 https://doi.org/10.1155/2020/9067821

  17. Zhang M, Wang C, Wang C, Zhao H, Zhao C, Chen Y, Wang Y, McClain C, Feng W (2015) Enhanced AMPK phosphorylation contributes to the beneficial effects of Lactobacillus rhamnosus GG supernatant on chronic-alcohol-induced fatty liver disease. J Nutr Biochem 26(4):337–344. https://doi.org/10.1016/j.jnutbio.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  18. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, Foufelle F (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280(26):25250–25257. https://doi.org/10.1074/jbc.M414222200

    Article  CAS  PubMed  Google Scholar 

  19. Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE (2006) AMP-activated protein kinase–the fat controller of the energy railroad. Can J Physiol Pharmacol 84(7):655–665. https://doi.org/10.1139/y06-005

    Article  CAS  PubMed  Google Scholar 

  20. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415(6869):339–343. https://doi.org/10.1038/415339a

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7(8):e42529. https://doi.org/10.1371/journal.pone.0042529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93(1):359–404. https://doi.org/10.1152/physrev.00033.2011

    Article  CAS  PubMed  Google Scholar 

  23. Allard J, Le Guillou D, Begriche K, Fromenty B (2019) Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. Adv Pharmacol 85:75–107. https://doi.org/10.1016/bs.apha.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  24. Yanovski SZ, Yanovski JA (2011) Obesity prevalence in the United States - up, down, or sideways? New Engl J Med 364(11):987–989. https://doi.org/10.1056/NEJMp1009229

    Article  CAS  PubMed  Google Scholar 

  25. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116(6):1494–1505. https://doi.org/10.1172/Jci26498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith GD (2016) A fatter, healthier but more unequal world. Lancet 387(10026):1349–1350. https://doi.org/10.1016/S0140-6736(16)00588-2

    Article  PubMed  Google Scholar 

  27. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490

    Article  PubMed  PubMed Central  Google Scholar 

  28. Solas M, Milagro FI, Ramirez MJ, Martinez JA (2017) Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol 37:87–92. https://doi.org/10.1016/j.coph.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  29. Thompson WL, Van Eldik LJ (2009) Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-7 through NF kappa B and MAPK dependent pathways in rat astrocytes. Brain Res 1295:230–230. https://doi.org/10.1016/j.brainres.2009.08.027

    Article  CAS  Google Scholar 

  30. Liu W, Zhao S, Wang J, Shi J, Sun Y, Wang W, Ning G, Hong J, Liu R (2017) Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol Nutr Food Res 61 (9). https://doi.org/10.1002/mnfr.201601082

  31. Czech MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23(7):804–814. https://doi.org/10.1038/nm.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol-Endoc M 294(5):E969–E977. https://doi.org/10.1152/ajpendo.00497.2007

    Article  CAS  Google Scholar 

  33. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30(Pt 6):1064–1070. https://doi.org/10.1042/bst0301064

    Article  CAS  PubMed  Google Scholar 

  34. Wang LJ, Zhang HW, Zhou JY, Liu Y, Yang Y, Chen XL, Zhu CH, Zheng RD, Ling WH, Zhu HL (2014) Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 25(3):329–336. https://doi.org/10.1016/j.jnutbio.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Xu SQ, Mihaylova MM, Zheng B, Hou XY, Jiang BB, Park O, Luo ZJ, Lefai E, Shyy JYJ, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang MW (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388. https://doi.org/10.1016/j.cmet.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomez-Zorita S, Lasa A, Abendano N, Fernandez-Quintela A, Mosqueda-Solis A, Garcia-Sobreviela MP, Arbones-Mainar JM, Portillo MP (2017) Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. J Transl Med 15(1):237. https://doi.org/10.1186/s12967-017-1343-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seong J, Kang JY, Sun JS, Kim KW (2019) Hypothalamic inflammation and obesity: a mechanistic review. Arch Pharm Res 42(5):383–392. https://doi.org/10.1007/s12272-019-01138-9

    Article  CAS  PubMed  Google Scholar 

  38. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761(7):736–744. https://doi.org/10.1016/j.bbalip.2006.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the editors and reviewers for helping to improve the clarity of the manuscript.

Funding

This work was supported by the Key Project of Chinese National Programs for Research and Development (No. 2016YFD0501009) and Jilin Province Medical and Health Talent Special Project (JLSCZT2019-018).

Author information

Authors and Affiliations

Authors

Contributions

YJ, XL, and YC designed the research. YJ, XL were responsible for the execution of the study and conducted data collection and analysis. YJ, NZ, XZ, and JT played major roles in drafting, writing, and revising this manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yongguo Cao.

Ethics declarations

Ethical Approval

All mice handling and study procedures followed the regulations of the Animal Care and Use Committee of Jilin University (protocol number SCXXK (JI-2016-0003).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jing, Y., Zhou, X. et al. Bacillus licheniformis Zhengchangsheng® Inhibits Obesity by Regulating the AMP-Activated Protein Kinase Signaling Pathway. Probiotics & Antimicro. Prot. 13, 1658–1667 (2021). https://doi.org/10.1007/s12602-021-09792-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09792-6

Keywords

Navigation