Skip to main content
Log in

Benefit of Dietary Supplementation with Bacillus subtilis BYS2 on Growth Performance, Immune Response, and Disease Resistance of Broilers

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

A strain of Bacillus subtilis (B. subtilis) BYS2 was previously isolated from Mount Tai, which is located in Tai’an City in the Shandong Province of China. The strain was then stored in the Environmental Microbiology Laboratory at Shandong Agricultural University. To evaluate the effect of the bacterium preparation in broiler production, we fed the bacterium (106 CFU/g) to 1-day-old broilers and continued this feeding for 6 weeks to analyze its effect on growth and immune performance. We found that the average weight of the bacterium-fed group increased by 17.19% at weeks 5 compared to the control group (P < 0.05). The height of the villi in the duodenum and jejunum and the ratio of villi to crypt were significantly increased in the bacterium-fed group at weeks 5 (P < 0.05). Also, the IgG in the serum of broilers in the experimental group increased by 31.60% (P < 0.05) and IgM 30.52% (P < 0.05) compared with those in the control group. The expressions of the major pattern recognition receptors (PRRs), antiviral proteins, pro-inflammatory cytokines, and β-defensins were significantly higher than those in the control group (P < 0.05). Meanwhile, the bursa immune organ indices of broilers in the experimental group were significantly higher than those in the control group (P < 0.05). Also, after 5 weeks of continuous feeding, when infected with Escherichia coli (E. coli) O1K1 and Newcastle disease virus (NDV) F48E8, the content of bacteria and virus in tissues and organs of the experimental group decreased significantly, and the survival rate of infected chickens increased by 31.1% and 17.7%, respectively (P < 0.05). These results show that the anti-infective B. subtilis BYS2 could, to some extent, replace antibiotics to promote growth, improve innate immunity, and enhance disease resistance in broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiseman A, Berman E, Klement E (2018) Risk factors for Newcastle disease in broiler farms in Israel. Prev Vet Med 149:92–97. https://doi.org/10.1016/j.prevetmed.2017.11.009

    Article  CAS  Google Scholar 

  2. Hussain A, Shaik S, Ranjan A, Nandanwar N, Tiwari SK, Majid M, Baddam R, Qureshi IA, Semmler T, Wieler LH (2017) Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Front Microbiol 8:2120. https://doi.org/10.3389/fmicb.2017.02120

    Article  Google Scholar 

  3. Latorre JD, Hernandez-Velasco X, Kuttappan VA, Wolfenden RE, Vicente JL, Wolfenden AD, Bielke LR, Prado-Rebolledo OF, Morales E, Hargis BM (2015) Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front Vet Sci 2:25. https://doi.org/10.3389/fvets.2015.00025

    Article  Google Scholar 

  4. Hu S, Wang L, Jiang Z (2017) Dietary additive probiotics modulation of the intestinal microbiota. Protein Pept Lett 24(5):382–387. https://doi.org/10.2174/0929866524666170223143615

    Article  CAS  Google Scholar 

  5. Sadeghi AA, Shawrang P, Shakorzadeh S (2015) Immune response of Salmonella challenged broiler chickens fed diets containing Gallipro®, a Bacillus subtilis probiotic. Probiotics Antimicrob Proteins 7(1):24–30. https://doi.org/10.1007/s12602-014-9175-1

    Article  CAS  Google Scholar 

  6. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9(1):43–52. https://doi.org/10.1016/S0958-6946(99)00043-6

    Article  Google Scholar 

  7. Rajput IR, Li WF, Li YL, Jian L, Wang MQ (2012) Application of probiotic (Bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of Shaoxing duck. Pak Vet J 33(1):69–72. https://doi.org/10.1111/vec.12017

    Article  Google Scholar 

  8. Sarkar PK, Morrison E, Tinggi U, Somerset SM, Craven GS (1998) B-group vitamin and mineral contents of soybeans during kinema production. J Sci Food Agric 78(4):498–502. https://doi.org/10.1002/(sici)1097-0010(199812)78:4<498:aid-jsfa145>3.0.co;2-c

    Article  CAS  Google Scholar 

  9. Sanders ME, Morelli L, Tompkins T (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2(3):101–110. https://doi.org/10.1111/j.1541-4337.2003.tb00017.x

    Article  Google Scholar 

  10. Additives EPo, Feed PoSuiA (2014) Scientific opinion on the safety and efficacy of vitamin B2 (80%) as riboflavin produced by Bacillus subtilis for all animal species, based on a dossier submitted by VITAC EEIG. EFSA J 12(1):3531. https://doi.org/10.2903/j.efsa.2014.3531

    Article  CAS  Google Scholar 

  11. Gao Z, Wu H, Shi L, Zhang X, Sheng R, Yin F, Gooneratne R (2017) Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Anim Nutr 3(2):109–113. https://doi.org/10.1016/j.aninu.2017.02.002

    Article  Google Scholar 

  12. Wang X, Yi Z, Ji C (2006) Effects of fructo-oligosaccharide and Bacillus subtilis on intestinal microflora, fecal emission of ammonia and sulfureted hydrogen and nutrient availability in broilers. Acta Vet Zootec Sin 37(4):337. https://doi.org/10.1360/aps040178

    Article  CAS  Google Scholar 

  13. Xiumei D, Chaofan Z, Ping W (2004) The effect of compound probiotics on intestinal bacteria and anti-oxidation in broilers. China Poult 14. https://doi.org/10.16372/j.issn.1004-6364.2004.14.004

  14. Stanley D, Hughes RJ, Moore RJ (2014) Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98(10):4301–4310. https://doi.org/10.1007/s00253-014-5646-2

    Article  CAS  Google Scholar 

  15. Guo J, Dong X, Liu S, Tong J (2018) High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poult Sci 97(7):2543–2556. https://doi.org/10.3382/ps/pey112

    Article  CAS  Google Scholar 

  16. Al-Fataftah A-R, Abdelqader A (2014) Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim Feed Sci Technol 198:279–285. https://doi.org/10.1016/j.anifeedsci.2014.10.012

    Article  CAS  Google Scholar 

  17. Lee S, Ingale S, Kim J, Kim K, Lokhande A, Kim E, Kwon I, Kim Y, Chae B (2014) Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim Feed Sci Technol 188:102–110. https://doi.org/10.1016/j.anifeedsci.2013.12.001

    Article  CAS  Google Scholar 

  18. Sen S, Ingale SL, Kim YW, Kim JS, Kim KH, Lohakare JD, Kim EK, Kim HS, Ryu MH, Kwon IK (2011) Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci 93(1):264–268. https://doi.org/10.1016/j.rvsc.2011.05.021

    Article  Google Scholar 

  19. Rajput IR, Li LY, Xin X, Wu BB, Juan ZL, Cui ZW, Yu DY, Li WF (2011) Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci 92(4):956–965. https://doi.org/10.3382/ps.2012-02845

    Article  CAS  Google Scholar 

  20. Guo M, Wu F, Hao G, Qi Q, Li R, Li N, Wei L, Chai T (2017) Bacillus subtilis improves immunity and disease resistance in rabbits. Front Immunol 8:354. https://doi.org/10.3389/fimmu.2017.00354

    Article  CAS  Google Scholar 

  21. Horgan R, Gavinelli A (2006) The expanding role of animal welfare within EU legislation and beyond. Livest Sci 103(3):0–307. https://doi.org/10.1016/j.livsci.2006.05.019

    Article  Google Scholar 

  22. Pesti GM (1995) Nutrient requirements of poultry. Anim Feed Sci Technol 56(1):177–178. https://doi.org/10.1016/0377-8401(95)90024-1

  23. Li R, Li N, Zhang J, Wang Y, Liu J, Cai Y, Chai T, Wei L (2016) Expression of immune-related genes of ducks infected with avian pathogenic Escherichia coli (APEC). Front Microbiol 7:637. https://doi.org/10.3389/fmicb.2016.00637

    Article  Google Scholar 

  24. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27(3):493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  25. Barri A, Honaker CF, Sottosanti JR, Hulet RM, Mcelroy AP (2011) Effect of incubation temperature on nutrient transporters and small intestine morphology of broiler chickens. Poult Sci 90(1):118-125. https://doi.org/10.3382/ps.2010-00908

    Article  CAS  Google Scholar 

  26. Margo CE, Lee A (1995) Fixation of whole eyes: the role of fixative osmolarity in the production of tissue artifact. Graefes Arch Clin Exp Ophthalmol 233(6):366. https://doi.org/10.1007/BF00200486

    Article  CAS  Google Scholar 

  27. Kim LM, King DJ, Suarez DL, Wong CW, Afonso CL (2007) Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. J Clin Microbiol 45(4):1310-1314. https://doi.org/10.1128/JCM.02594-06

    Article  CAS  Google Scholar 

  28. Edens F (2003) An alternative for antibiotic se in poultry:probiotics. Braz J Poult Sci 5(2):75-97. https://doi.org/10.1590/S1516-635X2003000200001

    Article  Google Scholar 

  29. Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J (2007) Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189(20):7367-7375. https://doi.org/10.1128/JB.00590-07

    Article  CAS  Google Scholar 

  30. Latorre JD, Hernandez-Velasco X, Kogut MH, Vicente JL, Wolfenden R, Wolfenden A, Hargis BM, Kuttappan VA, Tellez G (2014) Role of a Bacillus subtilis direct-fed microbial on digesta viscosity, bacterial translocation, and bone mineralization in turkey poults fed with a rye-based diet. Front Vet Sci 1:26. https://doi.org/10.3389/fvets.2014.00026

    Article  Google Scholar 

  31. Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y (2014) Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Austral J Anim Sci 27(8):1131-1140. https://doi.org/10.5713/ajas.2013.13737

    Article  CAS  Google Scholar 

  32. Zhang Q, Ma H, Mai K, Zhang W, Liufu Z, Xu W (2010) Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, apostichopus japonicus. Fish Shellfish Immunol 29(2):204-211. https://doi.org/10.1016/j.fsi.2010.03.009

    Article  Google Scholar 

  33. Uni Z, Perry GC (2006) Early development of small intestinal function. In: Graham CP (ed) Avian gut function in health and disease, 3rd. Hebrew, Israel, pp 29-42

  34. Heckert R, Estevez I, Russek-Cohen E, Pettit-Riley R (2002) Effects of density and perch availability on the immune status of broilers. Poult Sci 81(4):451-457. https://doi.org/10.1093/ps/81.4.451

    Article  CAS  Google Scholar 

  35. Koenen M, Kramer J, Van Der Hulst R, Heres L, Jeurissen S, Boersma W (2004) Immunomodulation by probiotic lactobacilli in layer-and meat-type chickens. Br Poult Sci 45(3):355-366. https://doi.org/10.1080/00071660410001730851

    Article  CAS  Google Scholar 

  36. Samolińska W, Kowalczuk-Vasilev E, Grela ER (2018) Comparative effect of different dietary inulin sources and probiotics on growth performance and blood characteristics in growing-finishing pigs. Arch Anim Nutr 72(5):379-395. https://doi.org/10.1080/1745039X.2018.1505147

    Article  Google Scholar 

  37. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  Google Scholar 

  38. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135-145. https://doi.org/10.4167/jbv.2011.41.4.225

    Article  CAS  Google Scholar 

  39. Wilden H, Schirrmacher V, Fournier P (2011) Important role of interferon regulatory factor (IRF)-3 in the interferon response of mouse macrophages upon infection by Newcastle disease virus. Int J Oncol 39(2):493-504. https://doi.org/10.3892/ijo.2011.1033

    Article  CAS  Google Scholar 

  40. Andrejeva J, Childs K, Young D, Carlos T, Stock N, Goodbourn S, Randall R (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci U S A 101(49):17264-17269. https://doi.org/10.1073/pnas.0407639101

    Article  CAS  Google Scholar 

  41. D-c K, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99(2):637-642. https://doi.org/10.1073/pnas.022637199

    Article  CAS  Google Scholar 

  42. Wei L, Cui J, Song Y, Zhang S, Han F, Yuan R, Gong L, Jiao P, Liao M (2014) Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Vet Res 45(1):66. https://doi.org/10.1186/1297-9716-45-66

    Article  CAS  Google Scholar 

  43. Wang Z, Zhang P, Fu W, Zhang Y, Li T, Pan B, Wei P (2010) Effect of probiotics on Newcastle disease virus. Acta Microbiol Sin 50(12):1664-1669. https://doi.org/10.13343/j.cnki.wsxb.2010.12.013

    Article  CAS  Google Scholar 

  44. Shahir MH, Afsarian O, Ghasemi S, Tellez G (2014) Effects of dietary inclusion of probiotic or prebiotic on growth performance, organ weight, blood parameters and antibody titers against influenza and Newcastle in broiler chickens. Int J Poult Sci 13(2):70. https://doi.org/10.3923/ijps.2014.70.75

    Article  Google Scholar 

  45. Wehkamp J, Harder J, Wehkamp K, Wehkamp-von Meissner B, Schlee M, Enders C, Sonnenborn U, Nuding S, Bengmark S, Fellermann K (2004) NF-κB-and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750-5758. https://doi.org/10.1128/IAI.72.10.5750-5758.2004

    Article  CAS  Google Scholar 

  46. Mageed AA, Isobe N, Yoshimura Y (2008) Expression of avian β-defensins in the oviduct and effects of lipopolysaccharide on their expression in the vagina of hens. Poult Sci 87(5):979-984. https://doi.org/10.1637/10848-042014-Reg.1

    Article  Google Scholar 

  47. Quinteiro-Filho WM, Calefi AS, Cruz DSG, Aloia TP, Zager A, Astolfi-Ferreira CS, Ferreira JAP, Sharif S, Palermo-Neto J (2017) Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and toll like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet Immunol Immunopathol 186:19-28. https://doi.org/10.1016/j.vetimm.2017.02.006

    Article  CAS  Google Scholar 

  48. Sandford EE (2011) Spleen transcriptome response to infection with avian pathogenic Escherichia coli (APEC) in broiler chickens. BMC Genomics 12(1):469. https://doi.org/10.1186/1471-2164-12-469

    Article  CAS  Google Scholar 

  49. Wang Y-G, Fang W-L, Wei J, Wang T, Wang N, Ma J-L, Shi M (2013) The involvement of NLRX1 and NLRP3 in the development of nonalcoholic steatohepatitis in mice. J Chin Med Assoc 76(12):686-692. https://doi.org/10.1016/j.jcma.2013.08.010

    Article  CAS  Google Scholar 

  50. Lee MO, Jang H-J, Rengaraj D, Yang S-Y, Han JY, Lamont SJ, Womack JE (2016) Tissue expression and antibacterial activity of host defense peptides in chicken. BMC Vet Res 12(1):231. https://doi.org/10.1186/s12917-016-0866-6

    Article  CAS  Google Scholar 

  51. Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q, Wang X, Liufu Z (2011) Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42(7):943-952. https://doi.org/10.1111/j.1365-2109.2010.02677.x

    Article  CAS  Google Scholar 

  52. Li Z, Ming Y, Michael Z, Shuping Z (2014) Expression, purification, and in vitro comparative characterization of avian beta-defensin-2, -6, and -12. Avian Dis 58(4):541-549. https://doi.org/10.1637/10848-042014-Reg.1

    Article  Google Scholar 

  53. Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S (2016) Structure-function analysis of avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol 16(1):210. https://doi.org/10.1186/s12866-016-0828-y

    Article  CAS  Google Scholar 

  54. Tellez G, Latorre JD (2017) Alternatives to antimicrobial growth promoters and their impact in gut microbiota, health and disease. Front Vet Sci 4:196. https://doi.org/10.3389/fvets.2017.00196

    Article  Google Scholar 

  55. Kan S, Nanno M (2008) Probiotics and immunology: separating the wheat from the chaff. Trends Immunol 29(11):565-573. https://doi.org/10.1016/j.it.2008.07.011

    Article  CAS  Google Scholar 

  56. Latorre JD, Hernandez-Velasco X, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM, Tellez G (2016) Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci 3:95. https://doi.org/10.3389/fvets.2016.00095

    Article  Google Scholar 

Download references

Funding

This study was sponsored by the key research project of Shandong Province “Research of a new probiotics for anti-infection, environmental improvement and alternative antibiotic and their products development” (2016GNC110014).

Author information

Authors and Affiliations

Authors

Contributions

YD and RL designed and conducted the study, performed most of the experiments, and wrote the manuscript. LM and YL performed the calculation. JZ and XQ collected samples. BW and TC discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Tongjie Chai or Bo Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Li, R., Liu, Y. et al. Benefit of Dietary Supplementation with Bacillus subtilis BYS2 on Growth Performance, Immune Response, and Disease Resistance of Broilers. Probiotics & Antimicro. Prot. 12, 1385–1397 (2020). https://doi.org/10.1007/s12602-020-09643-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09643-w

Keywords

Navigation