Skip to main content
Log in

Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Zn(II)-doped graphitic carbon nitride (g-C3N4) with high photodegradation activity was prepared by one facile step. The morphology and structure of the prepared Zn(II)-doped g-C3N4 were investigated, and the results showed that Zn(II) could self-disperse during the pyrolysis process and Zn–N bond was formed between g-C3N4 and Zn. The dope of Zn(II) influenced the structure of g-C3N4. The performance of photocatalytic activity of Zn(II)-doped g-C3N4 series indicated that the doped g-C3N4 with a small quantity of Zn (0.10 wt%) exhibits the best photocatalytic performance. The photodegradation activity for methyl orange was 2 times higher than that of pure g-C3N4. However, the photocatalytic activity decreased with the further increased content of Zn, which may be attributed to the structure change of g-C3N4 and the interaction of Zn–N bond between Zn and g-C3N4. Moreover, Zn(II)-doped g-C3N4 showed good recycling photocatalytic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. She XJ, Liu L, Ji HY, Mo Z, Li YP, Huang LY, Du DL, Xu H, Li HM. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B. 2016;187:144.

    Article  Google Scholar 

  2. Christoforidis KCC, Montini T, Bontempi E, Zafeiratos S, Jaen JJD, Fornasiero P. Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites. Appl Catal B. 2016;187:171.

    Article  Google Scholar 

  3. Wang GL, Shan LW, Wu Z, Dong LM. Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met. 2017;36(2):129.

    Article  Google Scholar 

  4. Hao RR, Wang GH, Jiang CJ, Tang H, Xu QC. In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci. 2017;411:400.

    Article  Google Scholar 

  5. Dong F, Zhao ZW, Xiong T, Ni ZL, Zhang WD, Sun YJ, Ho WK. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces. 2013;5(21):11392.

    Article  Google Scholar 

  6. Meng YL, Shen J, Xin G. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 2011;30(1s):276.

    Article  Google Scholar 

  7. Zhou C, Shi R, Shang L, Wu LZ, Tung CH, Zhang T. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res. 2018;11(6):3462.

    Article  Google Scholar 

  8. Shi L, Liang L, Wang FX, Jun M, Sun JM. Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal Sci Technol. 2014;4:3235.

    Article  Google Scholar 

  9. Yu HG, Chen FY, Chen F, Wang XF. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity. Appl Surf Sci. 2015;358(part A):385.

    Article  Google Scholar 

  10. Wang Y, Wang XC, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed. 2012;51(1):68.

    Article  Google Scholar 

  11. Liang DM, Jing T, Ma YC, Hao JX, Sun GY, Deng MS. Photocatalytic properties of g-C6N6/g-C3N4 heterostructure: a theoretical study. J Phys Chem C. 2016;120(42):24023.

    Article  Google Scholar 

  12. Zhang JS, Chen XF, Takanabe K, Maeda K, Domen K, Epping JD, Fu XZ, Antonietti M, Wang XC. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed. 2010;49(2):441.

    Article  Google Scholar 

  13. Wu SZ, Li K, Zhang WD. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl Surf Sci. 2015;324:324.

    Article  Google Scholar 

  14. Thomas A, Fischer A, Goettmann F, Antonietti M, Muller JO, Schlogl R, Carlsson JM. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18(41):4893.

    Article  Google Scholar 

  15. Cao SW, Yuan YP, Barber J, Loo SCJ, Xue C. Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation. Appl Surf Sci. 2014;319:344.

    Article  Google Scholar 

  16. Zhang GG, Zhang JS, Zhang MW, Wang XC. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem. 2012;22(16):8083.

    Article  Google Scholar 

  17. Feng LL, He F, Liu B, Yang GX, Gai SL, Yang PP, Li CX, Dai YL, Lv RC, Lin J. g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem Mater. 2016;28(21):7935.

    Article  Google Scholar 

  18. Xin G, Pan HF, Chen D, Zhang ZH, Wen B. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction. J Phys Chem Solids. 2013;74(2):286.

    Article  Google Scholar 

  19. Yu HJ, Shi R, Zhao YX, Bian T, Zhao YF, Zhou C, Waterhouse GI, Wu LZ, Tung CH, Zhang T. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Sci News. 2017;29(16):1605148.

    Google Scholar 

  20. Xia DH, Wang WJ, Yin R, Jiang ZF, An TC, Li GY, Zhao HJ, Wong PK. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl Catal B. 2017;214:23.

    Article  Google Scholar 

  21. Zou YJ, Shi JW, Ma DD, Fan ZY, Lu L, Niu CM. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem Eng J. 2017;322:435.

    Article  Google Scholar 

  22. Chen TT, Song CJ, Fan MS, Hong YZ, Hu B, Yu LB, Shi WD. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int J Hydrogen Energy. 2017;42(17):12210.

    Article  Google Scholar 

  23. Sun SW, Ji CN, Wu LL, Chi SH, Qu RJ, Li Y, Lu YX, Sun CM, Xue ZX. Facile one-pot construction of α-Fe2O3/g-C3N4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption. Mater Chem Phys. 2017;194:1.

    Article  Google Scholar 

  24. Wang FL, Chen P, Feng YP, Xie ZJ, Liu Y, Su YH, Zhang QX, Wang YF, Yao K, Lv WY, Liu GG. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B. 2017;207:103.

    Article  Google Scholar 

  25. Wang JJ, Tang L, Zeng GM, Deng YC, Liu YN, Wang LL, Zhou YY, Guo Z, Wang JJ, Zhang C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B. 2017;209:285.

    Article  Google Scholar 

  26. Silva GTSTD, Carvalho KTG, Lopes OF, Ribeiro C. g-C3N4/Nb2O5 heterostructures tailored by sonochemical synthesis: enhanced photocatalytic performance in oxidation of emerging pollutants driven by visible radiation. Appl Catal B. 2017;216:70.

    Article  Google Scholar 

  27. Miao XL, Ji ZY, Wu JJ, Shen XP, Wang JH, Kong LR, Liu MM, Song CS. g-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst. J Colloid Interface Sci. 2017;502:24.

    Article  Google Scholar 

  28. Li YF, Fang L, Jin RX, Xu YY, Fang X, Xing Y, Song SY. Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale. 2015;7:758.

    Article  Google Scholar 

  29. Li QB, Zhao X, Yang J, Jia CJ, Jin Z, Fan WL. Exploring the effects of nanocrystal facet orientations in g-C3N4/BiOCl heterostructures on photocatalytic performance. Nanoscale. 2015;7:18971.

    Article  Google Scholar 

  30. Zhao H, Ding XL, Zhang B, Li YX, Wang CY. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1−xS/Au/g-C3N4 photocatalysts under visible light. Sci Bull. 2017;62(9):602.

    Article  Google Scholar 

  31. Singh JA, Overbury SH, Dudney NJ, Li MJ, Veith GM. Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2012;2(6):1138.

    Article  Google Scholar 

  32. Bu YY, Chen ZY, Li WB. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B. 2014;144:622.

    Article  Google Scholar 

  33. Chang C, Fu Y, Hu M, Wang CY, Shan GQ, Zhu LY. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl Catal B. 2013;142–143:553.

    Article  Google Scholar 

  34. Zhang GG, Zhang MW, Ye XX, Qiu XQ, Lin S, Wang XC. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater. 2014;26(5):805.

    Article  Google Scholar 

  35. Yan SC, Li ZS, Zou ZG. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir. 2010;26(6):3894.

    Article  Google Scholar 

  36. Xu JS, Brenner TJK, Chen ZP, Neher D, Antonietti M, Shalom M. Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light. ACS Appl Mater Interfaces. 2014;6(19):16481.

    Article  Google Scholar 

  37. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM. Unique electronic structure induced high photoreactivity of sulfur-doped draphitic C3N4. J Am Chem Soc. 2010;132(33):11642.

    Article  Google Scholar 

  38. Zhang LG, Chen XF, Guan J, Jiang YJ, Hou TG, Mu XD. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater Res Bull. 2013;48(9):3485.

    Article  Google Scholar 

  39. Fang WJ, Liu JY, Yu L, Jiang Z, Shangguang WF. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl Catal B. 2017;209:631.

    Article  Google Scholar 

  40. Gao JT, Wang Y, Zhou SJ, Lin W, Kong Y. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. Chemcatchem. 2017;9(9):1708.

    Article  Google Scholar 

  41. Wang XC, Chen XF, Thomas A, Fu XZ, Antonietti M. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv Mater. 2009;21(16):1609.

    Article  Google Scholar 

  42. Yue B, Li QY, Iwai H, Kako T, Ye JH. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater. 2011;12(3):034401.

    Article  Google Scholar 

  43. Dong F, Wu LW, Sun YJ, Fu M, Wu ZB, Lee SC. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem. 2011;21(39):15171.

    Article  Google Scholar 

  44. Cao SW, Low JX, Yu JG, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater. 2015;27(13):2150.

    Article  Google Scholar 

  45. Tonda S, Kumar S, Kandula S, Shanker V. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A. 2014;2:6772.

    Article  Google Scholar 

  46. Futsuhara M, Yoshiokab K, Takaia O. Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films. 1998;322(1–2):274.

    Article  Google Scholar 

  47. Qiu PX, Chen H, Xu CM, Zhou N, Jiang F, Wang X, Fu YS. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J Mater Chem A. 2015;3:24237.

    Article  Google Scholar 

  48. Zhu YM, Xu GY, Guo TC, Hou HL, Tan SJ. Preparation, infrared emissivity and thermochromic properties of Co doped ZnO by solid state reaction. J Alloys Compd. 2017;720:105–15.

    Article  Google Scholar 

  49. Wang DH, Hui SE, Liu CC. Mass loss and evolved gas analysis in thermal decomposition of solid urea. Fuel. 2017;207:268.

    Article  Google Scholar 

  50. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424(1–2):131.

    Article  Google Scholar 

  51. Cong CJ, Luo ST, Tao YT, Zhang KL. Kinetics of thermal decomposition of Zn(Ac)2·2H2O in air atmosphere. Chem J Chin Univ. 2005;26(12):2327.

    Google Scholar 

  52. Mohamed MB, Abdel-Kader MH, Alhazime AA, Almarashi JQM. Effect of preparation methods and doping on the structural and tunable emissions of CdS. J Mol Struct. 2018;1155:666.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51574071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Li Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZT., Xu, JL., Zhou, H. et al. Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 38, 459–467 (2019). https://doi.org/10.1007/s12598-019-01222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01222-5

Keywords

Navigation