Skip to main content
Log in

Low-cycle fatigue behavior of a directionally solidified Ni-based superalloy subjected to gas hot corrosion pre-exposure

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The influence of gas high-temperature hot corrosion (HTHC) pre-exposure on low-cycle fatigue (LCF) behavior was characterized for the directionally solidified (DS) Ni-based superalloy DZ125. Fatigue tests were carried out at 850 °C in the pre-exposed and unexposed specimens for 2, 15 and 25 h. Experimental results show that the porous corrosion scale and γ′-depleted layer formed in gas hot corrosion condition alter the crack initiation mechanisms of the superalloy. Fatigue cracks of the pre-exposed specimens originate from multiple surface locations where spalling of the corrosion products occur, while nucleation of unexposed specimen begins in the defects close to the surface. There is a significant reduction in LCF behavior for pre-exposed specimens in comparison with unexposed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power. 2006;22(2):361.

    Article  Google Scholar 

  2. Sahm PR, Speidel MO, Woodford DA. High-temperature materials in gas turbines. J Eng Mater Technol. 1975;1:94.

    Article  Google Scholar 

  3. Eliaz N, Shemesh G, Latanision RM. Hot corrosion in gas turbine components. Eng Fail Anal. 2002;9(1):31.

    Article  Google Scholar 

  4. Rapp RA. Hot corrosion of materials. Pure Appl Chem. 1990;62(1):113.

    Article  Google Scholar 

  5. Carter TJ. Common failures in gas turbine blades. Eng Fail Anal. 2005;12(2):237.

    Article  Google Scholar 

  6. Guo J, Ranucci D, Picco E. Low cycle fatigue behaviour of cast nickel-base superalloy IN738LC in air and in hot corrosive environments. Mater Sci Eng. 1983;58(1):127.

    Article  Google Scholar 

  7. Sahu JK, Gupta RK, Swaminathan J, Pauloseb N, Mannanb SL. Influence of hot corrosion on low cycle fatigue behavior of nickel base superalloy SU 263. Int J Fatigue. 2013;51(2):68.

    Article  Google Scholar 

  8. Mahobia GS, Sudhakar RG, Antony A, Chattopadhyay K, NC, Santhi Srinivas NC, Singh Vakil. Effect of salt coatings on low cycle fatigue behavior of nickel-base superalloy GTM-SU-718. Proc Eng. 2013;55:830.

    Article  Google Scholar 

  9. Mahobia GS, Paulose N, Mannan SL, Sudhakara RG, Chattopadhyaya K, Santhi Srinivasa NC, Singha Vakil. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. Int J Fatigue. 2014;59(2):272.

    Article  Google Scholar 

  10. Guo J, Ranucci D, Picco E, Strocchi PM. Effect of environment on the low cycle fatigue behaviour of cast nickel-base superalloy IN738LC. Int J Fatigue. 1984;6(2):95.

    Article  Google Scholar 

  11. Saunders S, Nicholls J. Hot salt corrosion test procedures and coating evaluation. Thin Solid Films. 1984;119(3):247.

    Article  Google Scholar 

  12. Ma J, Jiang SM, Gong J, Chao S. Behaviour and mechanisms of alkali-sulphate-induced hot corrosion on composite coatings at 900 °C. Corros Sci. 2012;58:251.

    Article  Google Scholar 

  13. Qiao Y, Guo X, Li X. Hot corrosion behavior of silicide coating on an Nb–Ti–Si based ultrahigh temperature alloy. Corros Sci. 2014;91:75.

    Article  Google Scholar 

  14. Zheng L, Zhang MC, Dong JX. Hot corrosion behavior of powder metallurgy Rene95 nickel-based superalloy in molten NaCl–Na2SO4 salts. Mater Des. 2011;32(4):1981.

    Article  Google Scholar 

  15. Kosieniak E, Biesiada K, Kaczorowski J, Innocenti M. Corrosion failures in gas turbine hot components. J Fail Anal Prev. 2012;12(3):330.

    Article  Google Scholar 

  16. Yang XG, Dong CL, Shi DQ, Zhang L. Experimental investigation on both low cycle fatigue and fracture behavior of DZ125 base metal and the brazed joint at elevated temperature. Mater Sci Eng A. 2011;528(22):7005.

    Article  Google Scholar 

  17. Gordon AP, Neu RW, Well DL. Effect of pre-exposure on crack initiation life of a directionally solidified Ni-base superalloy. Int J Fatigue. 2009;31(2):393.

    Article  Google Scholar 

  18. Antolovich SD, Domas P, Strudel JL. Low cycle fatigue of René 80 as affected by prior exposure. Metall Trans A. 1979;10(12):1859.

    Article  Google Scholar 

  19. Nazmy M, Denk J, Baumann R, Künzler A. Environmental effects on tensile and low cycle fatigue behavior of single crystal nickel base superalloys. Scripta Mater. 2003;48(5):519.

    Article  Google Scholar 

  20. Barbosa C, Nascimento JL, Caminha IMV, Abud IC. Microstructural aspects of the failure analysis of nickel base superalloys components. Eng Fail Anal. 2005;12(3):348.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51571010) and the National Basic Research Program of China (No. 2015CB057400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, HY., Yang, JS., Yang, XG. et al. Low-cycle fatigue behavior of a directionally solidified Ni-based superalloy subjected to gas hot corrosion pre-exposure. Rare Met. 38, 227–232 (2019). https://doi.org/10.1007/s12598-016-0862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0862-9

Keywords

Navigation