Skip to main content
Log in

A Nature-Inspired Hybrid Technique for Interference Reduction in Cognitive Radio Networks

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing, a multicarrier method, is so far the best potential candidate for the physical layer of cognitive radio system. It has the ability to efficiently utilize the spectrum holes, contiguous or non-contiguous, and accordingly make an effective use of the natural resources. On the other hand, one of the major drawbacks is its high side-lobes that result in excessive out-of-band radiation. This out-of-band radiation causes significant interference to the nearby users, including the licensed or un-licensed. Existing techniques found in the literature for the reduction of out-of-band radiation have been compared with our proposed technique. In this paper, a hybrid technique is developed to reduce the out-of-band radiation by a cancelation carrier method using nature-inspired algorithm, known as cuckoo search algorithm. It has been widely used in different fields of engineering, for solving the problem related to optimization, especially global optimization. The generalized side-lobe canceller, which is the simplest version of linearly constraint minimum variance, coverts the constraint minimization problem into an unconstraint one. Simulation results depicted that with the proposed technique, significant improvement in interference reduction is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Pers Commun. 1999;6(4):13–8.

    Article  Google Scholar 

  2. Mitola J, Bose V, Leiner BM, Turletti T, Tennenhouse D. Special issue on software radio. IEEE Commun Mag. 1995

  3. J. Mitola, Cognitive radio—an integrated agent architecture for software defined radio, 2000.

    Google Scholar 

  4. Haykin S, Thomson DJ, Reed JH. Spectrum sensing for cognitive radio. Proc IEEE. 2009;97(5):849–77.

    Article  Google Scholar 

  5. Wang B, Liu KJR. Advances in cognitive radio networks: a survey. IEEE J Sel Top Signal Process. 2011;5(1):5–23.

    Article  Google Scholar 

  6. Müller VC. Autonomous cognitive systems in real-world environments: less control, more flexibility and better interaction. Cognit Comput. 2012;4(3):212–5.

    Article  Google Scholar 

  7. Farhang-Boroujeny B, Kempter R. Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun Mag. 2008;46(4):80–5.

    Article  Google Scholar 

  8. Proakis JG, Salehi M. Salehi Digital Communications. New York: McGraw-Hill; 2008.

    Google Scholar 

  9. Goldsmith A. Wireless communications: Cambridge university press; 2005.

  10. Noguet D, Gautier M, Berg V. Advances in opportunistic radio technologies for TVWS. EURASIP J Wirel Commun Netw. 2011;2011(1):1–12.

    Article  Google Scholar 

  11. El-Saadany MS, Shalash AF, Abdallah M. Revisiting active cancellation carriers for shaping the spectrum of OFDM-based cognitive radios, In Sarnoff Symposium, 2009. SARNOFF’09. IEEE, 2009, pp. 1–5.

  12. Sahin A, Arslan H. Edge windowing for OFDM based systems. Commun Lett IEEE. 2011;15(11):1208–11.

    Article  Google Scholar 

  13. Pagadarai S, Rajbanshi R, Wyglinski AM, Minden GJ. Sidelobe suppression for OFDM-based cognitive radios using constellation expansion. In: Wireless communications and networking conference, 2008. WCNC 2008. IEEE; 2008. p. 888–93.

    Chapter  Google Scholar 

  14. Li D, Dai X, Zhang H. Sidelobe suppression in NC-OFDM systems using constellation adjustment. Commun Lett IEEE. 2009;13(5):327–9.

    Article  CAS  Google Scholar 

  15. Yamaguchi H. Active interference cancellation technique for MB-OFDM cognitive radio. Microwave Conference, 2004 34th European. 2004;2:1105–8.

    Google Scholar 

  16. Qu D, Wang Z, Jiang T. Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM systems with cyclic prefix. Veh Technol IEEE Trans. 2010;59(4):1689–95.

    Article  Google Scholar 

  17. Ohta M, Okuno M, Yamashita K. Receiver iteration reduction of an N-continuous OFDM system with cancellation tones. Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. 2011:1–5.

  18. Brandes S, Cosovic I, Schnell M. Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Commun Lett. 2006;10(6):420–2.

    Article  Google Scholar 

  19. Brandes S, Cosovic I, Schnell M. Sidelobe suppression in OFDM systems by insertion of cancellation carriers. In: Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, vol. 1; 2005. p. 152–6.

    Chapter  Google Scholar 

  20. Pagadarai S, Wyglinski AM, Rajbanshi R. A sub-optimal sidelobe suppression technique for OFDM-based cognitive radios. In: Military Communications Conference, 2008. MILCOM 2008: IEEE; 2008. p. 1–6.

  21. Elahi A, Qureshi IM, Zaman F, Munir F. Reduction of out of band radiation in non-contiguous OFDM based cognitive radio system using heuristic techniques. J Inf Sci Eng. 2016;32(2):349–64.

    Google Scholar 

  22. Elahi A, Khattak TS, Qureshi IM, Gul N. Application of differential and cuckoo search algorithms in reduction of sidelobes. In: Multi-Topic Conference (INMIC), 2016 19th International; 2016. p. 1–5.

    Google Scholar 

  23. Elahi A, Qureshi IM, Atif M, Gul N. Interference reduction in cognitive radio networks using genetic and firefly algorithms. In: Communication, computing and digital systems (C-CODE), international conference on; 2017. p. 96–100.

    Google Scholar 

  24. Selim A, Macaluso I, Doyle L. Efficient sidelobe suppression for OFDM systems using advanced cancellation carriers. In: Communications (ICC), 2013 IEEE international conference on; 2013. p. 4687–92.

    Chapter  Google Scholar 

  25. Cosovic I, Brandes S, Schnell M. Subcarrier weighting: a method for sidelobe suppression in OFDM systems. Commun Lett IEEE. 2006;10(6):444–6.

    Article  Google Scholar 

  26. Selim A, Doyle L. Real-time sidelobe suppression for OFDM systems using advanced subcarrier weighting. In: Wireless Communications and Networking Conference (WCNC), 2013 IEEE; 2013. p. 4043–7.

    Chapter  Google Scholar 

  27. Cosovic I, Mazzoni T. Suppression of sidelobes in OFDM systems by multiple-choice sequences. Eur Trans Telecommun. 2006;17(6):623–30.

    Article  Google Scholar 

  28. Ma M, Huang X, Jiao B, Guo YJ. Optimal orthogonal precoding for power leakage suppression in DFT-based systems. Commun IEEE Trans. 2011;59(3):844–53.

    Article  Google Scholar 

  29. Zhou X, Li GY, Sun G. Multiuser spectral precoding for ofdm-based cognitive radios. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE; 2011. p. 1–5.

    Google Scholar 

  30. You Z, Fang J, Lu I-T. Combination of spectral and SVD precodings for out-of-band leakage suppression. In: Systems, applications and technology conference (LISAT), 2013 IEEE Long Island; 2013. p. 1–6.

    Google Scholar 

  31. Zhou X, Li GY, Sun G. Multiuser spectral precoding for OFDM-based cognitive radio systems. IEEE J Sel Areas Commun. 2013;31(3):345–52.

    Article  Google Scholar 

  32. Xu R, Chen M. A precoding scheme for DFT-based OFDM to suppress sidelobes. IEEE Commun Lett. 2009;13(10):776–8.

    Article  Google Scholar 

  33. Pandey A, Muneer P, Sameer SM. Two level precoding scheme for out of band radiation reduction in multiuser OFDM based cognitive radio. In: 2014 international conference on signal processing and communications (SPCOM); 2014. p. 1–5.

    Google Scholar 

  34. Elahi A, Qureshi IM, Khan ZU, Zaman F. Sidelobe reduction in non-contiguous OFDM-based cognitive radio systems using a generalized Sidelobe canceller. Appl Sci. 2015;5(4):894–909.

    Article  Google Scholar 

  35. Elahi A, Qureshi IM, Zaman F, Munir F, Umar A. Techniques for the suppression of sidelobes in a non-contiguous orthogonal frequency division multiplexing framework. Appl Informatics Springer. 2016;3(6):6.

    Article  Google Scholar 

  36. Elahi A, Qureshi IM, Zaman F, Gul N, Saleem T. Suppression of mutual interference in noncontiguous orthogonal frequency division multiplexing based cognitive radio systems. Wirel Commun Mob Comput. 2017;2017:1–9.

    Article  Google Scholar 

  37. Elahi A, Qureshi IM, Atif M, Gul N. Sidelobe reduction in cognitive radio systems using hybrid technique. World Acad Sci Eng Technol Int J Electr Comput Energ Electron Commun Eng. 2017;11(3):213–6.

    Google Scholar 

  38. Siddique N, Adeli H. Nature inspired computing: an overview and some future directions. Cognit Comput. 2015;7:706–14.

    Article  Google Scholar 

  39. Tosun Ö. Cuckoo Search Algorithm. In: Cuckoo search algorithm; 2014.

    Chapter  Google Scholar 

  40. Mareli M, Twala B. An adaptive cuckoo search algorithm for optimisation. Appl Comput Informatics. 2017

  41. Indumathy R, Maheswari SU, Subashini G. Nature-inspired novel cuckoo search algorithm for genome sequence assembly. Sadhana. 2015;40(1):1–14.

    Article  CAS  Google Scholar 

  42. ZU K, Naveed A, IM Q, Zaman F. Independent null steering by decoupling complex weights. IEICE Electron Express. 2011;8(13):1008–13.

    Article  Google Scholar 

  43. Hussain SA, Malik AN, Khan ZU, Qureshi IM. Spectrum sharing in cognitive radio using GSC with suppressed sidelobes. Int J Distrib Sens Networks. 2014;10(6):418192.

    Article  Google Scholar 

  44. Khan ZU, Naveed A, Qureshi IM, Zaman F. Comparison of adaptive beamforming algorithms robust against directional of arrival mismatch. J Sp Technol. 2012;1(1)

  45. Hei Y, Li W, Li M, Qiu Z, Fu W. Optimization of multiuser MIMO cooperative spectrum sensing in cognitive radio networks. Cognit Comput. 2015;7(3):359–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Elahi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elahi, A., Qureshi, I.M., Gul, N. et al. A Nature-Inspired Hybrid Technique for Interference Reduction in Cognitive Radio Networks. Cogn Comput 10, 805–815 (2018). https://doi.org/10.1007/s12559-018-9560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-018-9560-2

Keywords

Navigation