Skip to main content
Log in

Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Investigating the promising chalcogenide materials for the development of memory and advanced neuromorphic computing applications is a critical step in realizing electronic memory and synaptic devices that can efficiently emulate biological synaptic functions. However, the assessment of monochalcogenide materials for the fabrication of highly scalable memory and electronic synaptic devices that can accurately mimic synaptic functions remain limited. In the present study, we investigated the thickness-dependent resistive switching (RS) behavior of conductive bridge random access memory (CBRAM) based on a monochalcogenide GeSe switching medium for its possible application in high-performance memory and electronic synapses. GeSe thin films of different thicknesses (6, 13, 24, 35, 47, and 56 nm) were deposited via sputtering to fabricate CBRAM devices with a stacking sequence of Ag/GeSe/Pt/Ti/SiO2. The devices exhibited compliance current (CC)-free and electroforming-free RS with highly stable endurance and retention characteristics with no major degradation. All devices with a thickness of 6 nm had a low-resistance state (LRS), which required an initial reset to ensure reliable switching cycles. The devices with a thickness of 47 nm and above exhibited the co-existence of unipolar resistive switching (U-RS) and bipolar resistive switching (B-RS) with the CC-controlled transition between the two switching behaviors. Multilevel resistance states in the 24-nm device between a highresistance state (HRS) and an LRS were achieved by controlling the set-CC (from 5 mA to CC-free) and the reset stop voltage (from −0.5 to −1.0 V) during the set and reset processes, respectively. The analog RS behavior of the device was further investigated with appropriate pulse measurements to emulate vital synaptic functions, including long-term potentiation (LTP), long-term depression (LTD), spike-rate-dependent plasticity (SRDP), spike-timing-dependent plasticity (STDP), paired-pulse facilitation (PPF), paired-pulse depression (PPD) and post-tetanic potentiation (PTP). Overall, the detailed investigation of thickness-dependent GeSe monochalcogenide material indicates that it is a highly suitable candidate for use in highly scalable memory devices and electronic synapses for neuromorphic computing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, H.; Ali, A.; Jung, J.; Hu, Q. L.; Park, M. R.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Reversible transition of volatile to nonvolatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices. Appl. Phys. Lett. 2019, 114, 093503.

    Article  Google Scholar 

  2. Kim, W.; Yoo, C.; Park, E. S.; Ha, M.; Jeon, J. W.; Kim, G. S.; Woo, K. S.; Lee, Y. K.; Hwang, C. S. Electroforming-free bipolar resistive switching in GeSe thin films with a Ti-containing electrode. ACS Appl. Mater. Interfaces 2019, 11, 38910–38920.

    Article  CAS  Google Scholar 

  3. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  CAS  Google Scholar 

  4. Ali, A.; Abbas, Y.; Abbas, H.; Jeon, Y. R.; Hussain, S.; Naqvi, B. A.; Choi, C.; Jung, J. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Appl. Surf. Sci. 2020, 525, 146390.

    Article  CAS  Google Scholar 

  5. Lai, Y. S.; Tu, C. H.; Kwong, D. L.; Chen, J. S. Charge-transport characteristics in bistable resistive poly(N-vinylcarbazole) films. IEEE Electron Device Lett. 2006, 27, 451–453.

    Article  CAS  Google Scholar 

  6. Seo, S.; Lee, M. J.; Kim, D. C.; Ahn, S. E.; Park, B. H.; Kim, Y. S.; Yoo, I. K.; Byun, I. S.; Hwang, I. R.; Kim, S. H. et al. Electrode dependence of resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2005, 87, 263507.

    Article  Google Scholar 

  7. Yang, W. Y.; Rhee, S. W. Effect of electrode material on the resistance switching of Cu2O film. Appl. Phys. Lett. 2007, 91, 232907.

    Article  Google Scholar 

  8. Wu, M. C.; Ting, Y. H.; Chen, J. Y.; Wu, W. W. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci. 2019, 6, 1902363.

    Article  CAS  Google Scholar 

  9. Abbas, Y.; Park, M. R.; Hu, Q. L.; Lee, T. S.; Abbas, H.; Yoon, T. S.; Kang, C. J. Resistive switching characteristics of tantalum oxide with different top electrodes. J. Nanosci. Nanotechnol. 2016, 16, 10231–10236.

    Article  CAS  Google Scholar 

  10. Valov, I.; Sapezanskaia, I.; Nayak, A.; Tsuruoka, T.; Bredow, T.; Hasegawa, T.; Staikov, G.; Aono, M.; Waser, R. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 2012, 11, 530–535.

    Article  CAS  Google Scholar 

  11. Hu, B. L.; Zhu, X. J.; Chen, X. X.; Pan, L.; Peng, S. S.; Wu, Y. Z.; Shang, J.; Liu, G.; Yan, Q.; Li, R. W. A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 2012, 134, 17408–17411.

    Article  CAS  Google Scholar 

  12. Cho, B.; Yun, J. M.; Song, S.; Ji, Y.; Kim, D. Y.; Lee, T. Direct observation of Ag filamentary paths in organic resistive memory devices. Adv. Funct. Mater. 2011, 21, 3976–3981.

    Article  CAS  Google Scholar 

  13. Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. Formation process of conducting filament in planar organic resistive memory. Appl. Phys. Lett. 2013, 102, 141606.

    Article  Google Scholar 

  14. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

    Article  CAS  Google Scholar 

  15. Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.

    Article  CAS  Google Scholar 

  16. Zhao, X. N.; Fan, Z. Y.; Xu, H. Y.; Wang, Z. Q.; Xu, J. Q.; Ma, J. G.; Liu, Y. C. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. J. Mater. Chem. C 2018, 6, 7195–7200.

    Article  CAS  Google Scholar 

  17. Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.

    Article  CAS  Google Scholar 

  18. Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2 and Mo1−xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61.

    Article  CAS  Google Scholar 

  19. Yang, Z. B.; Hao, J. H.; Lau, S. P. Synthesis, properties, and applications of 2D amorphous inorganic mater. J. Appl. Phys. 2020, 127, 220901.

    Article  CAS  Google Scholar 

  20. Titova, L. V.; Fregoso, B. M.; Grimm, R. L. Group-IV monochalcogenides GeS, GeSe, SnS, SnSe. In Chalcogenide: From 3D to 2D and Beyond. Liu, X. Y.; Lee, S.; Furdyna, J. K.; Luo, T.; Zhang, Y. H., Eds.; Elsevier: Amsterdam, 2020; pp 119–151.

    Chapter  Google Scholar 

  21. Albers, W.; Haas, C.; Vink, H. J.; Wasscher, J. D. Investigations on SnS. J. Appl. Phys. 1961, 32, 2220–2225.

    Article  CAS  Google Scholar 

  22. Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

    Article  CAS  Google Scholar 

  23. Grandke, T.; Ley, L. Angular-resolved UV photoemission and the band structure of GeS. Phys. Rev. B 1977, 16, 832–842.

    Article  CAS  Google Scholar 

  24. Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.

    Article  Google Scholar 

  25. Cook, A. M.; Fregoso, B. M.; de Juan, F.; Coh, S.; Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 2017, 8, 14176.

    Article  CAS  Google Scholar 

  26. Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

    Article  Google Scholar 

  27. Rodin, A. S.; Gomes, L. C.; Carvalho, A.; Neto, A. H. C. Valley physics in tin (II) sulfide. Phys. Rev. B 2016, 93, 045431.

    Article  Google Scholar 

  28. Jaffery, S. H. A.; Kim, J.; Dastgeer, G.; Hussain, M.; Ali, A.; Hussain, S.; Eom, J.; Hong, S.; Jung, J. Thickness-dependent, gate-tunable rectification and highly sensitive photovoltaic behavior of heterostructured GeSe/WS2 p-n diode. Adv. Mater. Interfaces 2020, 7, 2000893.

    Article  CAS  Google Scholar 

  29. Hussain, M.; Aftab, S.; Jaffery, S. H. A.; Ali, A.; Hussain, S.; Cong, D. N.; Akhtar, R.; Seo, Y.; Eom, J.; Gautam, P. et al. Asymmetric electrode incorporated 2D GeSe for self-biased and efficient photodetection. Sci. Rep. 2020, 10, 9374.

    Article  CAS  Google Scholar 

  30. Nandakumar, S. R.; Gallo, M. L.; Boybat, I.; Rajendran, B.; Sebastian, A.; Eleftheriou, E. A phase-change memory model for neuromorphic computing. J. Appl. Phys. 2018, 124, 152135.

    Article  Google Scholar 

  31. Burr, G. W.; Breitwisch, M. J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L. A.; Padilla, A. et al. Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28, 223–262.

    Article  CAS  Google Scholar 

  32. Nam, K. H.; Kim, J. H.; Cho, W. J.; Kim, C. H.; Chung, H. B. Resistive switching in amorphous GeSe-based resistive random access memory. J. Nanosci. Nanotechnol. 2016, 16, 10393–10396.

    Article  CAS  Google Scholar 

  33. Soni, R.; Meuffels, P.; Staikov, G.; Weng, R.; Kügeler, C.; Petraru, A.; Hambe, M.; Waser, R.; Kohlstedt, H. On the stochastic nature of resistive switching in Cu doped Ge0.3Se0.7 based memory devices. J. Appl. Phys. 2011, 110, 054509.

    Article  Google Scholar 

  34. Lee, S. J.; Ahn, J. K.; Yoon, S. M.; Park, Y. S.; Yu, B. G.; Yoon, S. G. Switching characteristics of copper-doped GexTe1−x solid electrolyte films incorporated by nitrogen for programmable metallization cell memory applications. Met. Mater. Int. 2008, 14, 487–491.

    Article  CAS  Google Scholar 

  35. Ismail, M.; Abbas, H.; Choi, C.; Kim, S. Controllable analog resistive switching and synaptic characteristics in ZrO2/ZTO bilayer memristive device for neuromorphic systems. Appl. Surf. Sci. 2020, 529, 147107.

    Article  CAS  Google Scholar 

  36. Bräuhaus, D.; Schindler, C.; Böttger, U.; Waser, R. Radiofrequency sputter deposition of germanium-selenide thin films for resistive switching. Thin Solid Films 2008, 516, 1223–1226.

    Article  Google Scholar 

  37. Hu, Q. L.; Abbas, Y.; Abbas, H.; Park, M. R.; Yoon, T. S.; Kang, C. J. Resistive switching characteristics in manganese oxide and tantalum oxide devices. Microelectron. Eng. 2016, 160, 49–53.

    Article  CAS  Google Scholar 

  38. Feng, Y. L.; Huang, P.; Zhou, Z.; Ding, X. X.; Liu, L. F.; Liu, X. Y.; Kang, J. F. Negative differential resistance effect in Ru-based RRAM device fabricated by atomic layer deposition. Nanoscale Res. Lett. 2019, 14, 86.

    Article  Google Scholar 

  39. Hu, Q. L.; Abbas, H.; Kang, T. S.; Lee, T. S.; Lee, N. J.; Park, M. R.; Yoon, T. S.; Kim, J.; Kang, C. J. Forming-free resistive switching characteristics in manganese oxide and hafnium oxide devices. Jpn. J. Appl. Phys. 2019, 58, 044001.

    Article  CAS  Google Scholar 

  40. Zhang, Z. H.; Wang, Z. W.; Shi, T.; Bi, C.; Rao, F.; Cai, Y. M.; Liu, Q.; Wu, H. Q.; Zhou, P. Memory materials and devices: From concept to application. InfoMat 2020, 2, 261–290.

    Article  CAS  Google Scholar 

  41. Wang, S. S.; Wang, X. C.; Warner, J. H. All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246–5254.

    Article  CAS  Google Scholar 

  42. Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory mater. Nat. Mater. 2008, 7, 399–405.

    Article  Google Scholar 

  43. Rahaman, S. Z.; Maikap, S.; Das, A.; Prakash, A.; Wu, Y. H.; Lai, C. S.; Tien, T. C.; Chen, W. S.; Lee, H. Y.; Chen, F. T. et al. Enhanced nanoscale resistive switching memory characteristics and switching mechanism using high-Ge-content Ge0.5Se0.5 solid electrolyte. Nanoscale Res. Lett. 2012, 7, 614.

    Article  Google Scholar 

  44. Trinh, T. T.; Jang, K.; Dao, V. A.; Yi, J. Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors. J. Appl. Phys. 2014, 116, 214504.

    Article  Google Scholar 

  45. Rahaman, S. Z.; Maikap, S.; Chiu, H. C.; Lin, C. H.; Wu, T. Y.; Chen, Y. S.; Tzeng, P. J.; Chen, F.; Kao, M. J.; Tsai, M. J. Bipolar resistive switching memory using Cu metallic filament in Ge0.4Se0.6 solid electrolyte. Electrochem. Solid-State Lett. 2010, 13, H159–H162.

    Article  CAS  Google Scholar 

  46. Yu, S. M.; Wong, H. S. P. Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 2011, 58, 1352–1360.

    Article  CAS  Google Scholar 

  47. Jameson, J. R.; Kamalanathan, D. Subquantum conductive-bridge memory. Appl. Phys. Lett. 2016, 108, 053505.

    Article  Google Scholar 

  48. Van den Hurk, J.; Waser, R.; Vescan, A. Germanium Sulphide Based Resistive Switching Devices; Verlay Dr. Hut, 2016.

  49. Yang, C. C.; Chen, P. H.; Shih, C. C.; Wang, M. H.; Tsai, T. M.; Zheng, H. X.; Chen, W. C.; Chen, M. C.; Huang, H. C.; Ma, X. H. et al. Enhancement of surface chemical and physical properties of germanium-sulfur thin film using a water-supplemented carbon dioxide supercritical fluid treatment technique. Adv. Mater. Interfaces 2018, 5, 1801105.

    Article  Google Scholar 

  50. van den Hurk, J.; Havel, V.; Linn, E.; Waser, R.; Valov, I. Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/nanoelectronic logic and memory architectures. Sci. Rep. 2013, 3, 2856.

    Article  Google Scholar 

  51. Simmons, J. G.; Verderber, R. R. New conduction and reversible memory phenomena in thin insulating films. Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 1967, 301, 77–102.

    CAS  Google Scholar 

  52. Li, Y. T.; Long, S. B.; Zhang, M. H.; Liu, Q.; Shao, L. B.; Zhang, S.; Wang, Y.; Zuo, Q. Y.; Liu, S.; Liu, M. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications. IEEE Electron Device Lett. 2010, 31, 117–119.

    Article  Google Scholar 

  53. Wang, C.; Wu, H. Q.; Gao, B.; Zhang, T.; Yang, Y. C.; Qian, H. Conduction mechanisms, dynamics and stability in ReRAMs. Microelectron. Eng. 2017, 187, 121–133.

    Google Scholar 

  54. Guo, T.; Sun, B.; Zhou, Y.; Zhao, H. B.; Lei, M.; Zhao, Y. Overwhelming coexistence of negative differential resistance effect and RRAM. Phys. Chem. Chem. Phys. 2018, 20, 20635–20640.

    Article  CAS  Google Scholar 

  55. Wu, X.; Zhou, P.; Li, J.; Chen, L. Y.; Lv, H. B.; Lin, Y. Y.; Tang, T. A. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl. Phys. Lett. 2007, 90, 183507.

    Article  Google Scholar 

  56. Schindler, C.; Thermadam, S. C. P.; Waser, R.; Kozicki, M. N. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 2007, 54, 2762–2768.

    Article  CAS  Google Scholar 

  57. Ma, H. L.; Wang, Z. Q.; Xu, H. Y.; Zhang, L.; Zhao, X. N.; Han, M. S.; Ma, J. G.; Liu, Y. C. Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments. Chin. Phys. B 2016, 25, 127303.

    Article  Google Scholar 

  58. Goux, L.; Lisoni, J. G.; Jurczak, M.; Wouters, D. J.; Courtade, L.; Muller, C. Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 2010, 107, 024512.

    Article  Google Scholar 

  59. Jeong, D. S.; Schroeder, H.; Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid-State Lett. 2007, 10, G51.

    Article  CAS  Google Scholar 

  60. Lv, H. B.; Xu, X. X.; Liu, H. T.; Liu, R. Y.; Liu, Q.; Banerjee, W.; Sun, H. T.; Long, S. B.; Li, L.; Liu, M. Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory. Sci. Rep. 2015, 5, 7764.

    Article  CAS  Google Scholar 

  61. Ismail, M.; Abbas, H.; Choi, C.; Kim, S. Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd. 2020, 835, 155256.

    Article  CAS  Google Scholar 

  62. Schmitt, R.; Kubicek, M.; Sediva, E.; Trassin, M.; Weber, M. C.; Rossi, A.; Hutter, H.; Kreisel, J.; Fiebig, M.; Rupp, J. L. M. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater. 2019, 29, 1804782.

    Article  Google Scholar 

  63. Wang, L. Y.; Wang, Z. Y.; Zhao, W.; Hu, B.; Xie, L. H.; Yi, M. D.; Ling, H. F.; Zhang, C. X.; Chen, Y.; Lin, J. Y. et al. Neuromorphic computing: Controllable multiple depression in a graphene oxide artificial synapse (Adv. Electron. Mater. 1/2017). Adv. Electron. Mater. 2017, 3.

  64. Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C. Improved performance of Ta2O5−x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage. Appl. Phys. Lett. 2017, 111, 223505.

    Article  Google Scholar 

  65. Sarkar, P. K.; Bhattacharjee, S.; Barman, A.; Kanjilal, A.; Roy, A. Multilevel programming in Cu/NiOy/NiOx/Pt unipolar resistive switching devices. Nanotechnology 2016, 27, 435701.

    Article  CAS  Google Scholar 

  66. Balatti, S.; Larentis, S.; Gilmer, D. C.; Ielmini, D. Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 2013, 25, 1474–1478.

    Article  CAS  Google Scholar 

  67. Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L. et al. Electron holography on HfO2/HfO2−x bilayer structures with multilevel resistive switching properties. Nanotechnology 2017, 28, 215702.

    Article  CAS  Google Scholar 

  68. Han, S. T.; Hu, L.; Wang, X. D.; Zhou, Y.; Zeng, Y. J.; Ruan, S. C.; Pan, C. F.; Peng, Z. C. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 2017, 4, 1600435.

    Article  Google Scholar 

  69. Lee, T. S.; Lee, N. J.; Abbas, H.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl. Electron. Mater. 2020, 2, 1154–1161.

    Article  CAS  Google Scholar 

  70. Zhang, Y.; Shen, J. X.; Wang, S. L.; Shen, W.; Cui, C.; Li, P. G.; Chen, B. Y.; Tang, W. H. Multilevel resistance switching of Ag/Nb-doped SrTiO3/Ti structure. Appl. Phys. A 2012, 109, 219–222.

    Article  CAS  Google Scholar 

  71. Chen, Y. C.; Chung, Y. L.; Chen, B. T.; Chen, W. C.; Chen, J. S. Revelation on the interrelated mechanism of polarity-dependent and multilevel resistive switching in TaOx-based memory devices. J Phys. Chem. C 2013, 117, 5758–5764.

    Article  CAS  Google Scholar 

  72. Hu, W.; Zou, L. L.; Gao, C.; Guo, Y. C.; Bao, D. H. High speed and multi-level resistive switching capability of Ta2O5 thin films for nonvolatile memory application. J. Alloys Compd. 2016, 676, 356–360.

    Article  CAS  Google Scholar 

  73. Hsieh, W. K.; Lam, K. T.; Chang, S. J. Bipolar Ni/ZnO/HfO2/Ni RRAM with multilevel characteristic by different reset bias. Mater. Sci. Semicond. Process. 2015, 35, 30–33.

    Article  CAS  Google Scholar 

  74. Wu, J. J.; Ye, C.; Zhang, J. Q.; Deng, T. F.; He, P.; Wang, H. Multilevel characteristics for bipolar resistive random access memory based on hafnium doped SiO2 switching layer. Mater. Sci. Semicond. Process. 2016, 43, 144–148.

    Article  CAS  Google Scholar 

  75. Ge, S. P.; Wang, Y. H.; Xiang, Z. C.; Cui, Y. M. Reset voltage-dependent multilevel resistive switching behavior in CsPb1−xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces 2018, 10, 24620–24626.

    Article  CAS  Google Scholar 

  76. Ismail, M.; Ahmad, A.; Mahmood, K.; Akbar, T.; Rana, A. M.; Lee, J.; Kim, S. Room temperature deposited oxygen-deficient CeO2−x layer for multilevel resistive switching memory. Appl. Surf. Sci. 2019, 483, 803–810.

    Article  CAS  Google Scholar 

  77. Wang, H.; Meng, F. B.; Cai, Y. R.; Zheng, L. Y; Li, Y. G.; Liu, Y. J.; Jiang, Y. Y.; Wang, X. T.; Chen, X. D. Sericin for resistance switching device with multilevel nonvolatile memory. Adv. Mater. 2013, 25, 5498–5503.

    Article  CAS  Google Scholar 

  78. Zhou, W. P.; Xiong, Y. Q.; Zhang, Z. M.; Wang, D. H.; Tan, W. S.; Cao, Q. Q.; Qian, Z. H.; Du, Y. W. Multilevel resistance switching memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3−0.3PbTiO3 (011) heterostructure by combined straintronics-spintronics. ACS Appl. Mater. Interfaces 2016, 8, 5424–5431.

    Article  CAS  Google Scholar 

  79. Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.

    Article  CAS  Google Scholar 

  80. Islam, R.; Li, H. T.; Chen, P. Y.; Wan, W. E.; Chen, H. Y.; Gao, B.; Wu, H. Q.; Yu, S. M.; Saraswat, K.; Wong, H. S. P. Device and materials requirements for neuromorphic computing. J. Phys. D: Appl. Phys. 2019, 52, 113001.

    Article  Google Scholar 

  81. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

    Article  CAS  Google Scholar 

  82. Sokolov, A. S.; Jeon, Y. R.; Kim, S.; Ku, B.; Choi, C. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Mater. 2019, 11, 5.

    Article  CAS  Google Scholar 

  83. Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53.

    Article  CAS  Google Scholar 

  84. Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

    Article  Google Scholar 

  85. Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.

    Article  CAS  Google Scholar 

  86. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  CAS  Google Scholar 

  87. Zhao, M. R.; Gao, B.; Tang, J. S.; Qian, H.; Wu, H. Q. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 2020, 7, 011301.

    Article  CAS  Google Scholar 

  88. Cheng, C. D.; Li, Y. Q.; Zhang, T.; Fang, Y. C.; Zhu, J. D.; Liu, K. Q.; Xu, L. Y.; Cai, Y. M.; Yan, X. Q.; Yang, Y. C. et al. Bipolar to unipolar mode transition and imitation of metaplasticity in oxide based memristors with enhanced ionic conductivity. J. Appl. Phys. 2018, 124, 152103.

    Article  Google Scholar 

  89. Emelyanov, A. V.; Nikiruy, K. E.; Demin, V. A.; Rylkov, V. V.; Belov, A. I.; Korolev, D. S.; Gryaznov, E. G.; Pavlov, D. A.; Gorshkov, O. N.; Mikhaylov, A. N. et al. Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron. Eng. 2019, 215, 110988.

    Article  CAS  Google Scholar 

  90. Sokolov, A. S.; Jeon, Y. R.; Ku, B.; Choi, C. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. J. Alloys Compd. 2020, 822, 153625.

    Article  CAS  Google Scholar 

  91. Prezioso, M.; Bayat, F. M.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 2016, 6, 21331.

    Article  CAS  Google Scholar 

  92. Kim, M. K.; Lee, J. S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 2018, 12, 1680–1687.

    Article  CAS  Google Scholar 

  93. Li, X. Y.; Wu, H. Q.; Bin, G.; Wu, W.; Wu, D.; Deng, N.; Cai, J.; Qian, H. Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 2016, 27, 305201.

    Article  Google Scholar 

  94. Li, Y.; Chu, J. X.; Duan, W. J.; Cai, G. S.; Fan, X. H.; Wang, X. Z.; Wang, G.; Pei, Y. L. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces 2018, 10, 24598–24606.

    Article  CAS  Google Scholar 

  95. Abbas, Y.; Ambade, R. B.; Ambade, S. B.; Han, T. H.; Choi, C. Tailored nanoplateau and nanochannel structures using solution-processed rutile TiO2 thin films for complementary and bipolar switching characteristics. Nanoscale 2019, 11, 13815–13823.

    Article  CAS  Google Scholar 

  96. Kim, S.; Abbas, Y.; Jeon, Y. R.; Sokolov, A. S.; Ku, B.; Choi, C. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 2018, 29, 415204.

    Article  Google Scholar 

  97. Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016, 37, 994–997.

    Article  CAS  Google Scholar 

  98. Kim, K. M.; Lee, S. R.; Kim, S.; Chang, M.; Hwang, C. S. Self-limited switching in Ta2O5/TaOx memristors exhibiting uniform multilevel changes in resistance. Adv. Funct. Mater. 2015, 25, 1527–1534.

    Article  CAS  Google Scholar 

  99. Wang, M. H.; Hebert, K. R. Metal and oxygen ion transport during ionic conduction in amorphous anodic oxide films. J. Electrochem. Soc. 1999, 146, 3741–3749.

    Article  CAS  Google Scholar 

  100. Jeon, Y. R.; Abbas, Y.; Sokolov, A. S.; Kim, S.; Ku, B.; Choi, C. Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 2019, 11, 23329–23336.

    Article  CAS  Google Scholar 

  101. Abbas, H.; Abbas, Y.; Hassan, G.; Sokolov, A. S.; Jeon, Y. R.; Ku, B.; Kang, C. J.; Choi, C. The coexistence of threshold and memory switching characteristics of ALD HfO2 memristor synaptic arrays for energy-efficient neuromorphic computing. Nanoscale 2020, 12, 14120–14134.

    Article  CAS  Google Scholar 

  102. Tang, Y. P.; Shimizu, E.; Dube, G. R.; Rampon, C.; Kerchner, G. A.; Zhuo, M.; Liu, G. S.; Tsien, J. Z. Genetic enhancement of learning and memory in mice. Nature 1999, 401, 63–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. 2016M3A7B4909942 and 2016R1D1A1B01015047 as well by National Research Foundation of Korea (NRF) No. 2020R1A6A1A03043435). This research was also supported by the Nano Material Technology Development Programs and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. NRF-2019R1F1A1057243 and NRF-2020M3F3A2A02082449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhwan Choi or Jongwan Jung.

Additional information

Data availability

The data that support the plots within this paper and other finding of this study are available from the author upon reasonable request.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Abbas, H., Hussain, M. et al. Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Res. 15, 2263–2277 (2022). https://doi.org/10.1007/s12274-021-3793-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3793-1

Keywords

Navigation