Skip to main content

Advertisement

Log in

MicroRNAs in Cardiovascular Diseases: Biology and Potential Clinical Applications

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases represent one of the major causes for increasing rates of human morbidity and mortality across the world. This reinforces the necessity for the development of novel diagnostics and therapies for the early identification and cure of heart diseases. MicroRNAs are evolutionarily conserved small regulatory non-coding RNAs that regulate the expression of large number of genes. They are involved in several cellular pathophysiological pathways and have been shown to play a significant role in the pathogenesis of many disease states. Recent studies have correlated dysregulated miRNA expressions to diseased hearts and also shown the relevance of miRNA in growth, development, function, and stress responsiveness of the heart. The possibility of exploiting miRNAs to develop diagnostic markers or manipulating them to obtain therapeutic effects is very attractive since they have very specific targets in a particular cellular pathway. In this review we will summarize the role played by miRNAs in the heart and discuss the scope of utilizing miRNA-based strategies in the clinics for the benefit of mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbas, N. A., John, R. I., Webb, M. C., Kempson, M. E., Potter, A. N., Price, C. P., et al. (2005). Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clinical Chemistry, 51, 2059–2066.

    Article  CAS  PubMed  Google Scholar 

  2. Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications, 391, 73–77.

    Google Scholar 

  3. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., et al. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33, 2697–2706.

    Article  CAS  PubMed  Google Scholar 

  4. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  5. Barringhaus, K. G., & Zamore, P. D. (2009). MicroRNAs: Regulating a change of heart. Circulation, 119, 2217–2224.

    Article  PubMed  Google Scholar 

  6. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.

    Article  CAS  PubMed  Google Scholar 

  7. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine, 344, 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.

    Article  CAS  PubMed  Google Scholar 

  9. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324, 1710–1713.

    Article  CAS  PubMed  Google Scholar 

  10. Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13, 1097–1101.

    Article  CAS  Google Scholar 

  11. Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353, 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  12. Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 119, 2772–2786.

    Article  CAS  PubMed  Google Scholar 

  13. Callis, T. E., & Wang, D. Z. (2008). Taking microRNAs to heart. Trends in Molecular Medicine, 14, 254–260.

    Article  CAS  PubMed  Google Scholar 

  14. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18, 997–1006.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170, 1831–1840.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D. Z., Lu, Q., et al. (2009). MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circulation Research, 105, 158–166.

    Article  CAS  PubMed  Google Scholar 

  19. Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., et al. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clinical Chemistry, 54, 482–490.

    Article  CAS  PubMed  Google Scholar 

  20. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.

    Article  CAS  PubMed  Google Scholar 

  21. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460, 705–710.

    CAS  PubMed  Google Scholar 

  22. Cordes, K. R., & Srivastava, D. (2009). MicroRNA regulation of cardiovascular development. Circulation Research, 104, 724–732.

    Article  CAS  PubMed  Google Scholar 

  23. Cortez, M. A., & Calin, G. A. (2009). MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opinion on Biol Ther, 9, 703–711.

    Article  CAS  Google Scholar 

  24. Currie, R. W., Tanguay, R. M., & Kingma, J. G., Jr. (1993). Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation, 87, 963–971.

    CAS  PubMed  Google Scholar 

  25. da Costa Martins, P. A., Bourajjaj, M., Gladka, M., Kortland, M., van Oort, R. J., Pinto, Y. M., et al. (2008). Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 118, 1567–1576.

    Article  PubMed  CAS  Google Scholar 

  26. Divakaran, V., & Mann, D. L. (2008). The emerging role of microRNAs in cardiac remodeling and heart failure. Circulation Research, 103, 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  27. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.

    Article  CAS  PubMed  Google Scholar 

  28. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res, 104, 170–178. 176p following 178.

    Article  CAS  PubMed  Google Scholar 

  29. Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods, 4, 721–726.

    Article  CAS  PubMed  Google Scholar 

  30. Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.

    Article  CAS  PubMed  Google Scholar 

  31. Elmen, J., Lindow, M., Silahtaroglu, A., Bak, M., Christensen, M., Lind-Thomsen, A., et al. (2008). Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research, 36, 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  32. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 3, 87–98.

    Article  CAS  PubMed  Google Scholar 

  33. Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.

    Article  CAS  PubMed  Google Scholar 

  34. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283, 15878–15883.

    Article  CAS  PubMed  Google Scholar 

  35. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments in Cell, 15, 272–284.

    Article  CAS  Google Scholar 

  36. Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.

    Article  CAS  PubMed  Google Scholar 

  37. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19, 92–105.

    Article  CAS  PubMed  Google Scholar 

  38. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., et al. (2008). Serum microRNAs are promising novel biomarkers. PLoS ONE, 3, e3148.

    Article  PubMed  CAS  Google Scholar 

  39. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158.

    Article  CAS  PubMed  Google Scholar 

  40. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., et al. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffman, J. I. (1995). Incidence of congenital heart disease: II. Prenatal incidence. Pediatric Cardiology, 16, 155–165.

    Article  CAS  PubMed  Google Scholar 

  42. Horie, T., Ono, K., Nishi, H., Iwanaga, Y., Nagao, K., Kinoshita, M., et al. (2009). MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochemical and Biophysical Research Communications, 389, 315–320.

    Article  CAS  PubMed  Google Scholar 

  43. Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341, 1276–1283.

    Article  CAS  PubMed  Google Scholar 

  44. Hunter, M. P., Ismail, N., Zhang, X., Aguda, B. D., Lee, E. J., Yu, L., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE, 3, e3694.

    Article  PubMed  CAS  Google Scholar 

  45. Hutter, M. M., Sievers, R. E., Barbosa, V., & Wolfe, C. L. (1994). Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation, 89, 355–360.

    CAS  PubMed  Google Scholar 

  46. Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31, 367–373.

    Article  CAS  PubMed  Google Scholar 

  47. Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2, 219–229.

    Article  CAS  PubMed  Google Scholar 

  48. Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., et al. (2006). Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA, 12, 1197–1205.

    Article  CAS  PubMed  Google Scholar 

  49. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circulation Research, 100, 1579–1588.

    Article  CAS  PubMed  Google Scholar 

  50. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., & Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry, 55, 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  51. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.

    Article  CAS  PubMed  Google Scholar 

  52. Kajstura, J., Urbanek, K., Rota, M., Bearzi, C., Hosoda, T., Bolli, R., et al. (2008). Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 45, 505–513.

    Article  CAS  PubMed  Google Scholar 

  53. Kim, H. W., Haider, H. K., Jiang, S., & Ashraf, M. (2009). Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8 associated protein 2. Journal of Biological Chemistry, 284, 33161–33168.

    Article  PubMed  CAS  Google Scholar 

  54. Kloosterman, W. P., Wienholds, E., Ketting, R. F., & Plasterk, R. H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Research, 32, 6284–6291.

    Article  CAS  PubMed  Google Scholar 

  55. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.

    Article  CAS  PubMed  Google Scholar 

  56. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.

    Article  PubMed  CAS  Google Scholar 

  57. Kuehbacher, A., Urbich, C., & Dimmeler, S. (2008). Targeting microRNA expression to regulate angiogenesis. Trends in Pharmacological Sciences, 29, 12–15.

    Article  CAS  PubMed  Google Scholar 

  58. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.

    Article  CAS  PubMed  Google Scholar 

  59. Kwon, C., Han, Z., Olson, E. N., & Srivastava, D. (2005). MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 102, 18986–18991.

    Article  CAS  PubMed  Google Scholar 

  60. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.

    Article  CAS  PubMed  Google Scholar 

  61. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.

    Article  CAS  PubMed  Google Scholar 

  62. Laterza, O. F., Lim, L., Garrett-Engele, P. W., Vlasakova, K., Muniappa, N., Tanaka, W. K., et al. (2009). Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clinical Chemistry, 55, 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  63. Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101, 1225–1236.

    Article  CAS  PubMed  Google Scholar 

  64. Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiol, 6, 419–429.

    Google Scholar 

  65. Lee, I., Ajay, S. S., Yook, J. I., Kim, H. S., Hong, S. H., Kim, N. H., et al. (2009). New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res, 19, 1175–1183.

    Article  CAS  PubMed  Google Scholar 

  66. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  67. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051–4060.

    Article  CAS  PubMed  Google Scholar 

  68. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  69. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., & Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7, 719–723.

    Article  CAS  PubMed  Google Scholar 

  70. Liu, N., Williams, A. H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L. B., et al. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proceedings of the National Academy of Sciences of the United States of America, 104, 20844–20849.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research, 104, 476–487.

    Article  CAS  PubMed  Google Scholar 

  72. Loya, C. M., Lu, C. S., Van Vactor, D., & Fulga, T. A. (2009). Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods, 6, 897–903.

    Article  CAS  PubMed  Google Scholar 

  73. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.

    Article  CAS  PubMed  Google Scholar 

  74. Lu, Y., Zhang, Y., Shan, H., Pan, Z., Li, X., Li, B., et al. (2009). MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: A new mechanism for ischaemic cardioprotection. Cardiovascular Research, 84, 434–441.

    Article  CAS  PubMed  Google Scholar 

  75. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. Journal of Biological Chemistry, 283, 20045–20052.

    Article  CAS  PubMed  Google Scholar 

  76. Luo, X., Xiao, J., Lin, H., Li, B., Lu, Y., Yang, B., et al. (2007). Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. Journal of Cellular Physiology, 212, 358–367.

    Article  CAS  PubMed  Google Scholar 

  77. Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672.

    Article  CAS  PubMed  Google Scholar 

  78. Mandel, E. M., Callis, T. E., Wang, D. Z., & Conlon, F. L. (2005). Transcriptional mechanisms of congenital heart disease. Drug Discovery Today, 2, 33–38.

    CAS  PubMed  Google Scholar 

  79. Marber, M. S., Latchman, D. S., Walker, J. M., & Yellon, D. M. (1993). Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 88, 1264–1272.

    CAS  PubMed  Google Scholar 

  80. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574.

    Article  CAS  PubMed  Google Scholar 

  81. Mathonnet, G., Fabian, M. R., Svitkin, Y. V., Parsyan, A., Huck, L., Murata, T., et al. (2007). MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 317, 1764–1767.

    Article  CAS  PubMed  Google Scholar 

  82. Matkovich, S. J., Van Booven, D. J., Youker, K. A., Torre-Amione, G., Diwan, A., Eschenbacher, W. H., et al. (2009). Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation, 119, 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  83. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647–658.

    Article  CAS  PubMed  Google Scholar 

  84. Menghini, R., Casagrande, V., Cardellini, M., Martelli, E., Terrinoni, A., Amati, F., et al. (2009). MicroRNA-217 modulates endothelial cell senescence via silent information regulator 1. Circulation, 120, 1524–1532.

    Article  CAS  PubMed  Google Scholar 

  85. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.

    Article  CAS  PubMed  Google Scholar 

  86. Naga Prasad, S. V., Duan, Z. H., Gupta, M. K., Surampudi, V. S., Volinia, S., Calin, G. A., et al. (2009). Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. Journal of Biological Chemistry, 284, 27487–27499.

    Article  CAS  PubMed  Google Scholar 

  87. Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58, 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  88. Petersen, C. P., Bordeleau, M. E., Pelletier, J., & Sharp, P. A. (2006). Short RNAs repress translation after initiation in mammalian cells. Molecular Cell, 21, 533–542.

    Article  CAS  PubMed  Google Scholar 

  89. Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., et al. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 309, 1573–1576.

    Article  CAS  PubMed  Google Scholar 

  90. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proceedings of the National Academy of Sciences of the United States of America, 105, 1608–1613.

    Article  CAS  PubMed  Google Scholar 

  91. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104, 879–886.

    Article  CAS  PubMed  Google Scholar 

  92. Ransom, J., & Srivastava, D. (2007). The genetics of cardiac birth defects. Seminars in Cell & Developmental Biology, 18, 132–139.

    Article  CAS  Google Scholar 

  93. Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 103, 8721–8726.

    Article  CAS  PubMed  Google Scholar 

  94. Rao, P. K., Toyama, Y., Chiang, H. R., Gupta, S., Bauer, M., Medvid, R., et al. (2009). Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circulation Research, 105, 585–594.

    Article  CAS  PubMed  Google Scholar 

  95. Ren, X. P., Wu, J., Wang, X., Sartor, M. A., Qian, J., Jones, K., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119, 2357–2366.

    Article  CAS  PubMed  Google Scholar 

  96. Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82, 21–29.

    Article  CAS  PubMed  Google Scholar 

  97. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100, 416–424.

    Article  CAS  PubMed  Google Scholar 

  98. Sayed, D., Rane, S., Lypowy, J., He, M., Chen, I. Y., Vashistha, H., et al. (2008). MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular Biology of the Cell, 19, 3272–3282.

    Article  CAS  PubMed  Google Scholar 

  99. Scheinowitz, M., Abramov, D., & Eldar, M. (1997). The role of insulin-like and basic fibroblast growth factors on ischemic and infarcted myocardium: A mini review. International Journal of Cardiology, 59, 1–5.

    Article  CAS  PubMed  Google Scholar 

  100. Schipper, M. E., van Kuik, J., de Jonge, N., Dullens, H. F., & de Weger, R. A. (2008). Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. Journal of Heart and Lung Transplantation, 27, 1282–1285.

    Article  PubMed  Google Scholar 

  101. Shan, H., Li, X., Pan, Z., Zhang, L., Cai, B., Zhang, Y., et al. (2009). Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. British Journal of Pharmacology, 158, 1227–1235.

    Article  CAS  PubMed  Google Scholar 

  102. Shan, Z. X., Lin, Q. X., Fu, Y. H., Deng, C. Y., Zhou, Z. L., Zhu, J. N., et al. (2009). Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochemical and Biophysical Research Communications, 381, 597–601.

    Article  CAS  PubMed  Google Scholar 

  103. Shilo, S., Roy, S., Khanna, S., & Sen, C. K. (2008). Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 471–477.

    Article  CAS  PubMed  Google Scholar 

  104. Silvestri, P., Rigattieri, S., & Loschiavo, P. (2008). Does the effect of microRNAs in vascular neointimal formation depend on cell cycle phase? Circulation Research, 102, e101. author reply e102.

    Article  CAS  PubMed  Google Scholar 

  105. Sokol, N. S., & Ambros, V. (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes and Development, 19, 2343–2354.

    Article  CAS  PubMed  Google Scholar 

  106. Subramanian, S., Lui, W. O., Lee, C. H., Espinosa, I., Nielsen, T. O., Heinrich, M. C., et al. (2008). MicroRNA expression signature of human sarcomas. Oncogene, 27, 2015–2026.

    Article  CAS  PubMed  Google Scholar 

  107. Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kockskamper, J., et al. (2009). Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation, 119, 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  108. Syed, I. S., Sanborn, T. A., & Rosengart, T. K. (2004). Therapeutic angiogenesis: A biologic bypass. Cardiology, 101, 131–143.

    Article  PubMed  Google Scholar 

  109. Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.

    Article  CAS  PubMed  Google Scholar 

  110. Takaya, T., Ono, K., Kawamura, T., Takanabe, R., Kaichi, S., Morimoto, T., et al. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circolo J, 73, 1492–1497.

    Article  CAS  Google Scholar 

  111. Tang, Y., Zheng, J., Sun, Y., Wu, Z., Liu, Z., & Huang, G. (2009). MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J, 50, 377–387.

    Article  CAS  PubMed  Google Scholar 

  112. Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42, 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  113. Taulli, R., Bersani, F., Foglizzo, V., Linari, A., Vigna, E., Ladanyi, M., et al. (2009). The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. Journal of Clinical Investigation, 119, 2366–2378.

    CAS  PubMed  Google Scholar 

  114. Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: Novel regulators in cardiac development and disease. Cardiovascular Research, 79, 562–570.

    Article  CAS  PubMed  Google Scholar 

  115. Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116, 258–267.

    Article  CAS  PubMed  Google Scholar 

  116. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.

    Article  CAS  PubMed  Google Scholar 

  117. Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79, 581–588.

    Article  CAS  PubMed  Google Scholar 

  118. Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137, 1032–1046.

    Article  CAS  PubMed  Google Scholar 

  119. van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., et al. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developments in Cell, 17, 662–673.

    Article  CAS  Google Scholar 

  120. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.

    Article  PubMed  CAS  Google Scholar 

  121. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.

    Article  PubMed  CAS  Google Scholar 

  122. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13027–13032.

    Article  PubMed  Google Scholar 

  123. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine, 13, 1577–1585.

    Article  PubMed  CAS  Google Scholar 

  124. Vasilescu, C., Rossi, S., Shimizu, M., Tudor, S., Veronese, A., Ferracin, M., et al. (2009). MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE, 4, e7405.

    Article  PubMed  CAS  Google Scholar 

  125. Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: MicroRNAs can up-regulate translation. Science, 318, 1931–1934.

    Article  CAS  PubMed  Google Scholar 

  126. Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14, 369–381.

    Article  CAS  PubMed  Google Scholar 

  127. Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments in Cell, 15, 261–271.

    Article  CAS  Google Scholar 

  128. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35, 217–218.

    Article  CAS  PubMed  Google Scholar 

  129. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., et al. (2007). Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 25, 1149–1157.

    Article  CAS  PubMed  Google Scholar 

  130. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282, 12363–12367.

    Article  CAS  PubMed  Google Scholar 

  131. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120, 3045–3052.

    Article  CAS  PubMed  Google Scholar 

  132. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491.

    Article  CAS  PubMed  Google Scholar 

  133. Yekta, S., Shih, I. H., & Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594–596.

    Article  CAS  PubMed  Google Scholar 

  134. Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: Upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104, 572–575.

    Article  CAS  PubMed  Google Scholar 

  135. Yin, C., Wang, X., & Kukreja, R. C. (2008). Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Letters, 582, 4137–4142.

    Article  CAS  PubMed  Google Scholar 

  136. York, M., Scudamore, C., Brady, S., Chen, C., Wilson, S., Curtis, M., et al. (2007). Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicologic Pathology, 35, 606–617.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303–317.

    Article  CAS  PubMed  Google Scholar 

  138. Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbaya Subramanian.

Additional information

Note

Due to the space restrictions we could not cite many other significant contributions made in this rapidly progressing field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartha, R.V., Subramanian, S. MicroRNAs in Cardiovascular Diseases: Biology and Potential Clinical Applications. J. of Cardiovasc. Trans. Res. 3, 256–270 (2010). https://doi.org/10.1007/s12265-010-9172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9172-z

Keywords

Navigation