Skip to main content

Advertisement

Log in

Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) pathway is essential for maintenance of the sensitivity of certain adult sensory neurons. Here, we investigated whether the mTOR cascade is involved in scorpion envenomation-induced pain hypersensitivity in rats. The results showed that intraplantar injection of a neurotoxin from Buthus martensii Karsch, BmK I (10 μg), induced the activation of mTOR, as well as its downstream molecules p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), in lumbar 5–6 dorsal root ganglia neurons on both sides in rats. The activation peaked at 2 h and recovered 1 day after injection. Compared with the control group, the ratios of p-mTOR/p-p70 S6K/p-4EBP1 in three types of neurons changed significantly. The cell typology of p-mTOR/p-p70 S6K/p-4E-BP1 immuno-reactive neurons also changed. Intrathecal administration of deforolimus, a specific inhibitor of mTOR, attenuated BmK I-induced pain responses (spontaneous flinching, paroxysmal pain-like behavior, and mechanical hypersensitivity). Together, these results imply that the mTOR signaling pathway is mobilized by and contributes to experimental scorpion sting-induced pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003, 11: 895–904.

    Article  CAS  PubMed  Google Scholar 

  2. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110: 163–175.

    Article  CAS  PubMed  Google Scholar 

  3. Peterson RT, Schreiber SL. Translation control: connecting mitogens and the ribosome. Curr Biol 1998, 8: R248–250.

    Article  CAS  PubMed  Google Scholar 

  4. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999, 13: 1422–1437.

    Article  CAS  PubMed  Google Scholar 

  5. Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC Jr. Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T) P sites detected by phospho-specific antibodies. J Biol Chem 2000, 275: 33836–33843.

    Article  CAS  PubMed  Google Scholar 

  6. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 1994, 371: 762–767.

    Article  CAS  PubMed  Google Scholar 

  7. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 2010, 1804: 433–439.

    Article  CAS  PubMed  Google Scholar 

  8. Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010, 285: 14071–14077.

    Article  CAS  PubMed  Google Scholar 

  9. Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 2006, 34: 205–219.

    Article  CAS  PubMed  Google Scholar 

  10. Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 2008, 1784: 116–132.

    Article  CAS  PubMed  Google Scholar 

  11. Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 1997, 91: 927–938.

    Article  CAS  PubMed  Google Scholar 

  12. Sutton MA, Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 2006, 127: 49–58.

    Article  CAS  PubMed  Google Scholar 

  13. Kelleher RJ 3rd, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 2004, 44: 59–73.

    Article  CAS  PubMed  Google Scholar 

  14. Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, et al. Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain 2011, 7: 70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Obara I, Tochiki KK, Geranton SM, Carr FB, Lumb BM, Liu Q, et al. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 2011, 152: 2582–2595.

    Article  CAS  PubMed  Google Scholar 

  16. Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 2009, 29: 15017–15027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Asante CO, Wallace VC, Dickenson AH. Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain 2010, 11: 1356–1367.

    Article  CAS  PubMed  Google Scholar 

  18. Jimenez-Diaz L, Geranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, et al. Local translation in primary afferent fibers regulates nociception. PLoS One 2008, 3: e1961.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chai ZF, Zhu MM, Bai ZT, Liu T, Tan M, Pang XY, et al. Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 2006, 399: 445–453.

    Article  CAS  PubMed  Google Scholar 

  20. He H, Liu Z, Dong B, Zhou J, Zhu H, Ji Y. Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 2010, 431: 289–298.

    Article  CAS  PubMed  Google Scholar 

  21. Ji YH, Liu T. The study of sodium channels involved in pain responses using specific modulators. Acta Physiol Sin 2008, 60: 628–634.

    CAS  Google Scholar 

  22. Ji YH, Mansuelle P, Xu K, Granier C, Kopeyan C, Terakawa S, et al. Amino acid sequence of an excitatory insect-selective toxin (BmK IT) from venom of the scorpion Buthus martensi Karsch. Sci China B 1994, 37: 42–49.

    CAS  PubMed  Google Scholar 

  23. Ji YH, Wang WX, Wang Q, Huang YP. The binding of BmK abT, a unique neurotoxin, to mammal brain and insect Na(+) channels using biosensor. Eur J Pharmacol 2002, 454: 25–30.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu MM, Tao J, Tan M, Yang HT, Ji YH. U-shaped dosedependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage-gated sodium channels. Br J Pharmacol 2009, 158: 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  25. Tao J, Shi J, Yan L, Chen Y, Duan YH, Ye P, et al. Enhancement effects of martentoxin on glioma BK channel and BK channel (alpha+beta1) subtypes. PLoS One 2011, 6: e15896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bai ZT, Liu T, Jiang F, Cheng M, Pang XY, Hua LM, et al. Phenotypes and peripheral mechanisms underlying inflammatory pain-related behaviors induced by BmK I, a modulator of sodium channels. Exp Neurol 2010, 226: 159–172.

    Article  CAS  PubMed  Google Scholar 

  27. Liu ZR, Ye P, Ji YH. Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins. Protein Cell 2011, 2: 437–444.

    Article  CAS  PubMed  Google Scholar 

  28. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009, 139: 267–284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Louhimies S. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim 2002, 30(Suppl 2): 217–219.

    CAS  PubMed  Google Scholar 

  30. Hollands C. The Animals (scientific procedures) Act 1986. Lancet 1986, 2: 32–33.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110.

    Article  CAS  PubMed  Google Scholar 

  32. Ji YH, Mansuelle P, Terakawa S, Kopeyan C, Yanaihara N, Hsu K, et al. Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity. Toxicon 1996, 34: 987–1001.

    Article  CAS  PubMed  Google Scholar 

  33. VanElzakker M, Fevurly RD, Breindel T, Spencer RL. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 2008, 15: 899–908.

    Article  PubMed  Google Scholar 

  34. Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 1989, 29: 261–265.

    Article  CAS  PubMed  Google Scholar 

  35. Bai ZT, Zhang XY, Ji YH. Fos expression in rat spinal cord induced by peripheral injection of BmK I, an alpha-like scorpion neurotoxin. Toxicol Appl Pharmacol 2003, 192: 78–85.

    Article  CAS  PubMed  Google Scholar 

  36. McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRPalpha primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron 2013, 78: 138–151.

    Article  CAS  PubMed  Google Scholar 

  37. Lu J, Zhou XF, Rush RA. Small primary sensory neurons innervating epidermis and viscera display differential phenotype in the adult rat. Neurosci Res 2001, 41: 355–363.

    Article  CAS  PubMed  Google Scholar 

  38. Lawson SN, Waddell PJ. Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 1991, 435: 41–63.

    CAS  PubMed  Google Scholar 

  39. Cammalleri M, Lutjens R, Berton F, King AR, Simpson C, Francesconi W, et al. Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc Natl Acad Sci U S A 2003, 100: 14368–14373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Asante CO, Wallace VC, Dickenson AH. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol Pain 2009, 5: 27.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 2007, 27: 13958–13967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shi TJ, Huang P, Mulder J, Ceccatelli S, Hokfelt T. Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals 2009, 17: 203–212.

    Article  CAS  PubMed  Google Scholar 

  43. Guan XH, Lu XF, Zhang HX, Wu JR, Yuan Y, Bao Q, et al. Phosphatidylinositol 3-kinase mediates pain behaviors induced by activation of peripheral ephrinBs/EphBs signaling in mice. Pharmacol Biochem Behav 2010, 95: 315–324.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Ding or Yong-Hua Ji.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Hua, LM., Jiao, YL. et al. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci. Bull. 30, 21–32 (2014). https://doi.org/10.1007/s12264-013-1377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1377-0

Keywords

Navigation