Skip to main content
Log in

Carbon Nanotube Current Collector for Anode-free Battery

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lithium metal batteries (LMBs) have been gained attention for next-generation electrical energy storage because of their high energy density on both volumetric and gravimetric bases. However, in order to match the capacity ratio between Li metal and cathode, the thickness of Li metal must be 100 µm or less, but it is difficult to manufacture thin Li metal in a large area. Rather than changing the thickness of lithium, the anode-free battery, which has the advantage of achieving high energy density, is an alternative for LMB. Also, unlike LMBs, self-discharging does not occur in the anode-free battery after the battery is assembled. In addition, LMBs have low cycle stability due to moss-like deposition and dendrite growth during charge and discharge. In this work, carbon nanotube (CNT) film was used as a current collector for an anode-free battery, and the electrochemical properties were analyzed. The surface morphology of Li metal plated on the CNT film was smooth and not mossy-like because Li nucleation and Li growth occurred uniformly due to the low Li nucleation activation energy and the large specific surface area of CNT film, which made the Li flux occurs evenly. These results demonstrate the high potential of the CNT film as a current collector for an anode-free battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu, and J. G. Zhang, Adv. Funct. Mater., 26, 1602353 (2016).

    Google Scholar 

  2. M. S. Whittingham, Proc. IEEE, 100, 1518 (2012).

    Article  CAS  Google Scholar 

  3. Z. W. Zhang, H. J. Peng, M. Zhao, and J. Q. Huang, Adv. Funct. Mater., 28, 1707536 (2018).

    Article  CAS  Google Scholar 

  4. H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, and B. Scrosati, Nat. Chem., 4, 579 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Q. Xie, W. Li, A. Dolocan, and A. Manthiram, Chem. Mater., 31, 8886 (2019).

    Article  CAS  Google Scholar 

  6. B. Zhu, X. Wang, P. Yao, J. Li, and J. Zhu, Chem. Sci., 10, 7132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 135, 1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. S. Huang, L. Tang, H. Najafabadi, S. Chen, and Z. Ren, Nano Energy, 38, 504 (2017).

    Article  CAS  Google Scholar 

  9. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, Energy Environ. Sci., 7, 513 (2014).

    Article  CAS  Google Scholar 

  10. B. Liu, J. Zhang, and W. Xu, Joule, 2, 833 (2018).

    Article  CAS  Google Scholar 

  11. D. Lin, Y. Liu, and Y. Chi, Nat. Nanotechnol., 12, 194 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. S. Nanda, A. Gupta, and A. Manthiram, Adv. Energy. Mater., 11, 2000804 (2020)

    Article  CAS  Google Scholar 

  13. O. Mashtalir, M. Nguyen, E. Bodoin, L. Swonger, and S. P. O’Brien, ACS Omega., 3, 181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Becking, A. Gröbmeyer, M. Kolek, U. Rodehorst, S. Schulze, M. Winter, P. Bieker, and M. C. Stan, Adv. Mater. Interfaces., 4, 1700166 (2017).

    Article  CAS  Google Scholar 

  15. C. Fang, X. Wang, and Y. S. Meng, Trends Chem., 1, 152 (2019).

    Article  CAS  Google Scholar 

  16. J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J. G. Zhang, Nat. Commun., 6, 6362 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. P. Bai, J. Li, F. R. Brushett, and M. Z. Bazant, Energy Environ. Sci., 9, 3221 (2016).

    Article  CAS  Google Scholar 

  18. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, Chem. Rev., 117, 10403 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Liu, Q. Liu, L. Xin, Y. Liu, F. Yang, E. Stach, and J. Xie, Nat. Energy, 2, 17083 (2017).

    Article  CAS  Google Scholar 

  20. S. Sheng, L. Sheng, L. Wang, N. Piao, and X. He, J. Power Sources, 476, 228749 (2020).

    Article  CAS  Google Scholar 

  21. X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, and Q. Zhang, Adv. Sci., 3, 1500213 (2016).

    Article  CAS  Google Scholar 

  22. K. Xu, Chem. Rev., 114, 11503 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. H. Kim, G. Jeong, Y. U. Kim, J. H. Kim, C. M. Park, and H. J. Sohn, Chem. Soc. Rev., 42, 9011 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, Nat. Energy, 1, 16114 (2016).

    Article  CAS  Google Scholar 

  25. D. Lin, Y. Liu, A. Pei, and Y. Cui, Nano Res., 10, 4003 (2017).

    Article  CAS  Google Scholar 

  26. J. Janek and W. G. Zeier, Nat. Energy, 1, 16141 (2016).

    Article  Google Scholar 

  27. C. Yan, X. B. Cheng, Y. Tian, X. Chen, X. Q. Zhang, W. J. Li, J. Q. Huang, and Q. Zhang, Adv. Mater., 30, 1707629 (2018).

    Article  CAS  Google Scholar 

  28. R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W. H. Zhang, Y. Zhou, and Q. Qiao, Adv. Energy Mater., 9, 1901486 (2019).

    Article  CAS  Google Scholar 

  29. L. H. Abrha, T. A. Zegeye, T. T. Hagos, H. Sutiono, T. M. Hagos, G. B. Berhe, C. J. Huang, S. K. Jiang, W. N. Su, Y. W. Yang, and B. J. Hwang, Electrochim. Acta, 325, 134825 (2019).

    Article  CAS  Google Scholar 

  30. Z. T. Wondimkun, T. T. Beyene, M. A. Weret, N. A. Sahalie, C. J. Huang, B. Thirumalraj, B. A. Jote, D. Wang, W. N. Su, C. H. Wang, G. Brunklaus, M. Winter, and B. J. Hwang, J. Power Sources, 450, 227589 (2020).

    Article  CAS  Google Scholar 

  31. M. Liu, C. Wang, Z. Cheng, S. Ganapathy, L. A. Haverkate, S. Unnikrishnan, and M. Wagemaker, ACS Mater. Lett., 2, 665 (2020).

    Article  CAS  Google Scholar 

  32. A. A. Assegie, J. H. Cheng, L. M. Kuo, W. N. Su, and B. J. Hwang, Nanoscale, 10, 6125 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. A. A. Assegie, C. C. Chung, M. C. Tsai, W. N. Su, C. W. Chen, and B. J. Hwang, Nanoscale, 11, 2710 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. W. Chen, R. V. Salvatierra, M. Ren, J. Chen, M. G. Stanford, and J. M. Tour, Adv. Mater., 32, 2002850 (2020).

    Article  CAS  Google Scholar 

  35. A. Pei, G. Zheng, F. Shi, Y. Lim, and Y. Cui, Nano Lett., 17, 1132 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. R. Zhang, X. B. Cheng, C. Z. Zhao, H. J. Peng, J. L. Shi, J. Q. Huang, J. Wang, F. Wei, and Q. Zhang, Adv. Mater., 28, 1504117 (2016).

    Google Scholar 

  37. A. Jana, S. I. Woo, K. S. N. Vikrant, and R. E. García, Energy Environ. Sci., 12, 3595 (2019).

    Article  CAS  Google Scholar 

  38. Y. Zhang, B. Liu, E. Hitz, W. Luo, Y. Yao, Y. Li and H. Li, Nano Res., 10, 1356 (2017).

    Article  CAS  Google Scholar 

  39. S. Lee, H. Song, J. Y. Hwang, and Y. Jeong, Fibers Polym., 18, 2334 (2017).

    Article  CAS  Google Scholar 

  40. T. T. Beyene, H. K. Bezabh, M. A. Weret, T. M. Hagos, C. J. Huang, C. H. Wang, W. N. Su, H. Dai, and B. J. Hwang, J. Electrochem. Soc., 166, A1501 (2019).

    Article  CAS  Google Scholar 

  41. Z. Wang, Z. Wu, N. Bramnik, and S. Mitra, Adv. Mater., 26, 1304020 (2014).

    Google Scholar 

  42. J. Lee, D. M. Lee, Y. K. Kim, H. S. Jeong, and S. M. Kim, Small, 13, 1701131 (2017).

    Article  CAS  Google Scholar 

  43. A. Jorio and R. Saito, J. Appl. Phys., 129, 021102 (2021).

    Article  CAS  Google Scholar 

  44. M. Stancu, G. Ruxanda, D. Ciuparu, and A. Dinescu, J. Optoelectron. Adv. M., 5, 846 (2011).

    CAS  Google Scholar 

  45. H. C. Chen, H. Y. Chiu, and K. T. Huang, Diam. Relat. Mater., 92, 1 (2019).

    Article  CAS  Google Scholar 

  46. J. Kim, H. Kim, H. Song, D. Kim, G. H. Kim, D. Im, Y. Jeong, and T. Park, Energy, 227, 120459 (2021).

    Article  CAS  Google Scholar 

  47. H. Kim, H. Song, N. Çakmakçı, H. Kang, J. Park, M. Shin, and Y. Jeong, Fiber. Polym., 22, 2673 (2021).

    Article  CAS  Google Scholar 

  48. M. Chen, H. W. Yu, J. H. Chen, and H. S. Koo, Diam. Relat. Mater., 16, 1110 (2007).

    Article  CAS  Google Scholar 

  49. K. Yan, Z. Lu, H. W. Lee, F. Xiong, P. C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Nat. Energy, 1, 16010 (2016).

    Article  CAS  Google Scholar 

  50. R. Pathak, Y. Zhou, and Q. Qiao, Appl. Sci., 10, 4185 (2020).

    Article  CAS  Google Scholar 

  51. K. H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, and N. P. Dasgupta, J. Mater. Chem. A, 5, 11671 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A5A1015596), and Industrial Material Core Technology Development Program (Grant No 20004272, Development of Rapid Hand Cooling Technology for Injection Mold Using Nano Carbon based Surface Heating Element) funded by the Ministry of Trade, Industry & Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjin Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, Ds., Jeong, Y. Carbon Nanotube Current Collector for Anode-free Battery. Fibers Polym 23, 2149–2155 (2022). https://doi.org/10.1007/s12221-022-4953-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4953-y

Keywords

Navigation