Skip to main content
Log in

Application of Fluorescence Spectroscopy in Indigo Reduction Process : Identification of Reduction Stages and Reduced Indigo Concentration

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, we traced the stages of indigo reduction and evaluated the concentration of reduced indigo by using fluorescence spectroscopy. For the indigo reduction, the inorganic reduction system of Na2S2O4 and the microbial reduction system of Dietzia sp. KDB1 strain separated from traditional fermentation bath were used. The technique of florescence excitation-emission matrix (FEEM) was applied for the tracing of indigo reduction. With the progress of indigo reduction, maximum excitation wavelength was observed at 420 nm (stage of hydroxyl group form), 440 nm (stage of mono-sodium substituted), and 460 nm (stage of di-sodium substituted) at constant maximum emission wavelength of 495 nm. The peak of KDB1 disappeared at shorter wavelength than 440 nm with the progress of reduction. When polystyrene cell was used, diagonal peak of elastic scattering also disappeared with the progress of reduction in the inorganic reduction system. This phenomenon could be explained by the absorbance increase of reduced indigo at the same wavelength region. Also, the fluorescence intensity was linearly proportional to K/S value for the reduced indigo concentration of less than 2 mM in both of the inorganic reduction system (pH 9.5–10.5, <60 °C) and the bacterial reduction system (pH 10.0, 30 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Saikhao, J. Setthayanond, T. Karpkird, T. Bechtold, and P. Suwanruji, J. Cleaner Prod., 197, 106 (2018).

    Article  CAS  Google Scholar 

  2. M. Božič, V. Kokol, and G. M. Guebitz, Text. Res. J., 79, 895 (2009).

    Article  Google Scholar 

  3. R. G. Rinker, S. Lynn, D. M. Mason, and W. H. Corcoran, Ind. Eng. Chem. Fundam., 4, 282 (1965).

    Article  CAS  Google Scholar 

  4. M. Božič and V. Kokol, Dyes Pigm., 76, 299 (2008).

    Article  Google Scholar 

  5. N. Meksi, M. B. Ticha, M. Kechida, and M. F. Mhenni, J. Cleaner Prod., 24, 149 (2012).

    Article  CAS  Google Scholar 

  6. Y. Shin, M. Choi, and D. I. Yoo, Fash. Text., 1, 1 (2014).

    Article  Google Scholar 

  7. R. G. Compton, S. J. Perkin, D. P. Gamblin, J. Davis, F. Marken, A. N. Padden, and P. John, New J. Chem., 24, 179 (2000).

    Article  CAS  Google Scholar 

  8. B. Smith, AATCC Rev., 7, 36 (2007).

    CAS  Google Scholar 

  9. U. Sahin, A. Ülgen, A. Kekeç, and A. Gökmen, Text. Res. J., 74, 193 (2004).

    Article  CAS  Google Scholar 

  10. E. P. A. Kumbasar, H. Aydin, Z. Ondogan, M. Ozcelik, and E. N. Ondogan, Fibers Text. East. Eur., 14, 57 (2006).

    Google Scholar 

  11. J. S. S. de Melo, R. Rondão, H. D. Burrows, M. J. Melo, S. Navaratnam, R. Edge, and G. Voss, ChemPhysChem, 7, 2303 (2006).

    Article  Google Scholar 

  12. G. A. Baig, Indian J. Fibre Text. Res., 37, 265 (2012).

    Google Scholar 

  13. F. Govaert, E. Temmerman, and P. Kiekens, Anal. Chim. Acta, 385, 307 (1999).

    Article  CAS  Google Scholar 

  14. Y. Shin, K. Son, and D. I. Yoo, Fiber. Polym., 20, 80 (2019).

    Article  CAS  Google Scholar 

  15. A. Baran, A. Fiedler, H. Schulz, and M. Baranska, Anal. Methods, 2, 1372 (2010).

    Article  CAS  Google Scholar 

  16. B. C. Liau, T. T. Jong, M. R. Lee, and S. S. Chen, J. Pharm. Biomed. Anal., 43, 346 (2007).

    Article  CAS  Google Scholar 

  17. N. N. P. Thao, Master Thesis, Centria Univ. Appl. Sci., Finland, 2019.

    Google Scholar 

  18. V. Buscio, M. Crespi, and C. Gutiérrez-Bouzán, Materials, 7, 6184 (2014).

    Article  Google Scholar 

  19. S. Park, J. Y. Ryu, J. Seo, and H. G. Hur, J. Kor. Soc. Appl. Biol. Chem., 55, 83 (2012).

    Article  CAS  Google Scholar 

  20. R. C. Pereira, M. Pineiro, A. M. Galvão, and J. S. S. de Melo, Dyes Pigm., 158, 259 (2018).

    Article  CAS  Google Scholar 

  21. J. I. Rhee and T. H. Kang, Process Biochem., 42, 1124 (2007).

    Article  CAS  Google Scholar 

  22. A. Nakar, Z. E. Schmilovitch, D. Vaizel-Ohayon, Y. Kroupitski, M. Borisover, and S. Sela, Water Res., 169, 115197 (2020).

    Article  CAS  Google Scholar 

  23. S. P. N. Rempel, J. Riesz, J. Gilmore, J. P. Bothma, and P. Meredith, J. Phys. Chem. B, 109, 20629 (2005).

    Article  Google Scholar 

  24. C. Xiaoli, L. Guixiang, Z. Xin, H. Yongxia, and Z. Youcai, Waste Manage., 32, 438 (2012).

    Article  Google Scholar 

  25. V. V. Volkov, R. Chelli, R. Righini, and C. C. Perry, Dyes Pigm., 172, 107761 (2020).

    Article  CAS  Google Scholar 

  26. Y. Shin, K. Son, and D. I. Yoo, Fiber. Polym., 17, 1000 (2016).

    Article  CAS  Google Scholar 

  27. J. S. de Melo, A. P. Moura, and M. J. Melo, J. Phys. Chem. A, 108, 6975 (2004).

    Article  Google Scholar 

  28. X. He, F. Yang, S. Li, X. He, A. Yu, J. Chen, and J. Wang, J. Phys. Chem. A, 123, 6463 (2019).

    Article  CAS  Google Scholar 

  29. M. Moreno, J. M. Ortiz-Sánchez, R. Gelabert, and J. M. Lluch, Phys. Chem. Chem. Phys., 15, 20236 (2013).

    Article  CAS  Google Scholar 

  30. R. Rondão, J. S. de Melo, M. J. Melo, and A. J. Parola, J. Phys. Chem. A, 116, 2826 (2012).

    Article  Google Scholar 

  31. K. Kumar, M. Tarai, and A. K. Mishra, Trends Analyt. Chem., 97, 216 (2017).

    Article  CAS  Google Scholar 

  32. G. O. Bosire and J. C. Ngila, Anal. Methods, 8, 1415 (2016).

    Article  CAS  Google Scholar 

  33. G. A. Baig, Color. Technol., 128, 114 (2012).

    Article  CAS  Google Scholar 

  34. R. S. Blackburn, T. Bechtold, and P. John, Color. Technol., 125, 193 (2009).

    Article  CAS  Google Scholar 

  35. M. Tarai and A. K. Mishra, Anal. Chim. Acta, 940, 113 (2016).

    Article  CAS  Google Scholar 

  36. A. V. Fonin, A. I. Sulatskaya, I. M. Kuznetsova, and K. K. Turoverov, PLoS One, 9, e103878 (2014).

    Article  Google Scholar 

  37. S. K. Panigrahi and A. K. Mishra, Fuel, 267, 117174 (2020).

    Article  CAS  Google Scholar 

  38. M. Kubista, R. Sjoback, S. Eriksson, and B. Albinsson, Analyst, 119, 417 (1994).

    Article  CAS  Google Scholar 

  39. S. K. Panigrahi and A. K. Mishra, J. Photochem. Photobiol., C, 41, 100318 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (Ministry of Science, ICT and Future Planning) in 2018 (No. 2017R1A2B4009555).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Il Yoo or Younsook Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, C., Rhee, J.I., Yoo, D.I. et al. Application of Fluorescence Spectroscopy in Indigo Reduction Process : Identification of Reduction Stages and Reduced Indigo Concentration. Fibers Polym 23, 127–135 (2022). https://doi.org/10.1007/s12221-022-1360-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-1360-3

Keywords

Navigation