Skip to main content
Log in

Simulation of the Optimized Thermal Conductivity of a Rigid Polyurethane Foam during Its Foaming Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermal conductivity (λ) of a rigid polyurethane (PU) foam plays a vital role in determining the performance of thermal insulation. To accurately predict this property for a given recipe in a few seconds is the first step towards striking a balance between compressive strength, λ, and more properties of a foam product in industrial applications during formulation. What experimentally observed from PU closed-cell foams made from PAPI-27 Polymeric Methylene Diphenyl Diisocyanate (PMDI), Voranol 360, and n-pentane were: (1) foam shrinkage and even collapse occurred on both low (typically less than 0.9) and ultra-high (close to 2.0) indexes of isocyanate (IA); (2) to achieve the lowest λ for the best thermal insulation, it was suggested to use the highest IA without any foam shrinkage, the fastest stirring rate under safety, and the least physical blowing agent (PBA) until a sharp turn in the trend of λ; (3) there was a definite link between foam density (ρf), closed cell content (ccc), and λ: (a) a low λ requested a high ρf and ccc (b) a denser foam could be achieved by at least three ways. Increasing the agitation rate had a limit, above which the change in density became insignificant. However, a higher IA and reducing the amount of PBA had always been linear with ρf. (c) ρf was the cornerstone of ccc. In low ρf range, a growth of density gave rise to a distinct improvement of ccc, beyond which ccc reached a plateau for any higher density. The foam thermal conductivity during polymerization was successfully simulated by Matlab with 0.0157 % deviation. λ was initially dominated by the contribution from the resin mixture until the gel reaction time. Then, the dominant was shifted to the contribution by the gas component. The magnitude of thermal radiation was rather low throughout the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Tu, P. Kiatsimkul, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 105, 453 (2007).

    Article  CAS  Google Scholar 

  2. Y. C. Tu, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 109, 537 (2008).

    Article  CAS  Google Scholar 

  3. Y. C. Tu, H. Fan, G. Suppes, and F. H. Hsieh, Appl. Polym. Sci., 114, 2577 (2009).

    Article  CAS  Google Scholar 

  4. H. Fan, A. Tekeei, G. J. Suppes, and F. H. Hsieh, Int. J. Polym. Sci., 2012 (2012).

    Google Scholar 

  5. W. Fang, Y. Tang, H. Zhang, and W. Tao, J. Wuhan Univ. Technol. Sci. Ed., 32, 703 (2017).

    Article  CAS  Google Scholar 

  6. P. Ferkl, M. Toulec, E. Laurini, S. Pricl, M. Fermeglia, S. Auffarth, B. Eling, V. Settels, and J. Kosek, Chem. Eng. Sci., 172, 323 (2017).

    Article  CAS  Google Scholar 

  7. H. Zhang, W. Z. Fang, Y. M. Li, and W. Q. Tao, Appl. Therm. Eng., 115, 528 (2017).

    Article  CAS  Google Scholar 

  8. Y. Zhao, M. J. Gordon, A. Tekeei, F. H. Hsieh, and G. J. Suppes, Appl. Polym. Sci., 130, 1131 (2013).

    Article  CAS  Google Scholar 

  9. Y. Zhao, F. Zhong, A. Tekeei, and G. J. Suppes, Appl. Catal. A Gen., 469, 229 (2014).

    Article  CAS  Google Scholar 

  10. H. Al-Moameri, Y. Zhao, R. Ghoreishi, and G. J. Suppes, Ind. Eng. Chem. Res., 55, 2336 (2016).

    Article  CAS  Google Scholar 

  11. R. Ghoreishi and G. J. Suppes, RSC Adv., 5, 68361 (2015).

    Article  CAS  Google Scholar 

  12. Sigma-Aldrich, “TCPP, Mixture of Isomers” https:// www.sigmaaldrich.com/catalog/product/sial/32952?lang =en&region=US.

  13. Momentive Company, “Niax* Silicone L-6900” https:// www.momentive.com/en-US/categories/urethane-additives/ niax-silicone-l-6900/#.

  14. Dow Plastics, PAPI-27 Polymeric MDI, Form No. PA-26-333-0301 (2001).

  15. Dow Plastics, Voranol 360, Form No. 109–01273 (2001).

  16. R. Herrington and K. Hock, “Dow Polyurethanes”, 2nd ed., pp. 2.2, Dow Chemical Company, 1997.

  17. ASTM C518 (2015).

  18. ASTM D1622 (2014).

  19. ASTM D6226 (2015).

  20. A. T. Huber and L. J. Gibson, J. Mater. Sci., 23, 3031 (1988).

    Article  CAS  Google Scholar 

  21. J. R. Dawson and J. B. Shortall, J. Mater. Sci., 17, 220 (1982).

    Article  CAS  Google Scholar 

  22. N. C. Hilyard and A. Cunningham, “Low Density Cellular Plastics: Physical Basis of Behaviour”, pp.115–124, Chapman & Hall, 1994.

    Book  Google Scholar 

  23. M. C. Hawkins, B. O’Toole, and D. Jackovich, J. Cell. Plast., 41, 267 (2005).

    Article  CAS  Google Scholar 

  24. L. J. Gibson and M. F. Ashby, “Cellular Solids: Structure and Properties”, 2nd ed., pp.202–207, Cambridge University Press, 1997.

    Book  Google Scholar 

  25. B. E. Poling, J. M. Prausnitz, and J. P. O’connell, “The Properties of Gases and Liquids”, 5th ed., pp.10.56–10.64, McGraw-Hill, 2001.

    Google Scholar 

  26. C. L. Yaws, “Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficient of Liquids and Gases”, p.68, 96, Gulf Publishing Company, 1995.

    Google Scholar 

  27. S. Devotta and V. R. Pendyala, Ind. Eng. Chem. Res., 31, 2042 (1992).

    Article  CAS  Google Scholar 

  28. Wikipedia, “Joback Method”, https://en.wikipedia.org/ wiki/Joback_method.

  29. M. Nagvekar and T. E. Daubert, Ind. Eng. Chem. Res., 26, 1362 (1987).

    Article  CAS  Google Scholar 

  30. S. An, L. Shen, and G. J. Suppes, Fiber. Polym., 18, 1031 (2017).

    Article  CAS  Google Scholar 

  31. A. L. Lindsay and L. A. Bromley, Ind. Eng. Chem., 42, 1508 (1950).

    Article  CAS  Google Scholar 

  32. J. D. Pandey and S. R. Prajapati, Procedings of Indian National Science Academy, 45, 372 (1979).

    CAS  Google Scholar 

  33. Y. Nawab, P. Casari, N. Boyard, and F. Jacquemin, J. Mater. Sci., 48, 2394 (2013).

    Article  CAS  Google Scholar 

  34. H. Al-Moameri, R. Ghoreishi, Y. Zhao, and G. J. Suppes, RSC Adv., 5, 17171 (2015).

    Article  CAS  Google Scholar 

  35. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, 6th ed., pp.587–590, John Wiley & Sons, Inc., 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Suppes, G.J. & Ghosh, T.K. Simulation of the Optimized Thermal Conductivity of a Rigid Polyurethane Foam during Its Foaming Process. Fibers Polym 20, 358–374 (2019). https://doi.org/10.1007/s12221-019-8703-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8703-8

Keywords

Navigation