Skip to main content

Advertisement

Log in

B16 Melanoma Cancer Cells with Higher Metastatic Potential are More Deformable at a Whole-Cell Level

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Metastasis is a process in which cancer cells spread from the primary focus site to various other organ sites. Many studies have suggested that reduced stiffness would facilitate passing through extracellular matrix when cancer cells instigate a metastatic process. Here we investigated the compressive properties of melanoma cancer cells with different metastatic potentials at the whole-cell level. Differences in their compressive properties were analyzed by examining actin filament structure and actin-related gene expression.

Methods

Compressive tests were carried out for two metastatic B16 melanoma variants (B16-F1 and B16-F10) to characterize global compressive properties of cancer cells. RNA-seq analysis and fluorescence microscopic imaging were performed to clarify contribution of actin filaments to the global compressive properties.

Results

RNA-seq analysis and fluorescence microscopic imaging revealed the undeveloped structure of actin filaments in B16-F10 cells. The Young’s modulus of B16-F10 cells was significantly lower than that of B16-F1 cells. Disruption of the actin filaments in B16-F1 cells reduced the Young’s modulus to the same level as that of B16-F10 cells, while the Young’s modulus in B16-F10 cells remained the same regardless of the disruption.

Conclusions

In B16 melanoma cancer cell lines, cells with higher metastatic potential were more deformable at the whole-cell level with undeveloped actin filament structure, even when highly deformed. These results imply that invasive cancer cells may gain the ability to inhibit actin filament development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

KEGG:

Kyoto Encyclopedia of Gene and Genomes

CD:

Cytochalasin D

TPM:

Transcripts per million

KAAS:

KEGG Automatic Annotation Server

HBSS:

Hanks’ balanced salt solution

PBS:

Phosphate buffered saline

SD:

Standard deviation

TV1:

Transcript variant 1

References

  1. Alibert, C., B. Goud, and J. B. Manneville. Are cancer cells really softer than normal cells? Biol. Cell. 109:167–189, 2017. https://doi.org/10.1111/boc.201600078.

    Article  Google Scholar 

  2. Bobrowska, J., K. Awsiuk, J. Pabijan, P. Bobrowski, J. Lekki, K. M. Sowa, J. Rysz, A. Budkowski, and M. Lekka. Biophysical and biochemical characteristics as complementary indicators of melanoma progression. Anal. Chem. 91:9885–9892, 2019. https://doi.org/10.1021/acs.analchem.9b01542.

    Article  Google Scholar 

  3. Brás, M. M., M. Radmacher, S. R. Sousa, and P. L. Granja. Melanoma in the eyes of mechanobiology. Front. Cell Dev. Biol. 8:54, 2020. https://doi.org/10.3389/fcell.2020.00054.

    Article  Google Scholar 

  4. Caille, N., O. Thoumine, Y. Tardy, and J. J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187, 2002. https://doi.org/10.1016/S0021-9290(01)00201-9.

    Article  Google Scholar 

  5. Chambers, A. F., A. C. Groom, and I. C. MacDonald. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2:563–572, 2002. https://doi.org/10.1038/nrc865.

    Article  Google Scholar 

  6. Esue, O., A. A. Carson, Y. Tseng, and D. A. Wirtz. Direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J. Biol. Chem. 281:30393–30399, 2006. https://doi.org/10.1074/jbc.M605452200.

    Article  Google Scholar 

  7. Fidler, I. J. Selection of successive tumour lines for metastasis. Nat. New Biol. 242:148–149, 1973. https://doi.org/10.1038/newbio242148a0.

    Article  Google Scholar 

  8. Guilak, F., J. R. Tedrow, and R. Burgkart. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269:781–786, 2000. https://doi.org/10.1006/bbrc.2000.2360.

    Article  Google Scholar 

  9. Hashimoto, K., A. Kodama, M. Sugino, T. Yobimoto, T. Honda, A. Hanashima, Y. Ujihara, and S. Mohri. Nuclear connectin novex-3 promotes proliferation of hypoxic foetal cardiomyocytes. Sci. Rep. 8:12337, 2018. https://doi.org/10.1038/s41598-018-30886-9.

    Article  Google Scholar 

  10. Hu, S., R. Wang, C. M. Tsang, S. W. Tsao, D. Sun, and R. H. W. Lam. Revealing elasticity of largely deformed cells flowing along confining microchannels. RSC Adv. 8:1030–1038, 2018. https://doi.org/10.1039/C7RA10750A.

    Article  Google Scholar 

  11. Isenberg, G., U. Aebi, and T. D. Pollard. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature 288:455–459, 1980. https://doi.org/10.1038/288455a0.

    Article  Google Scholar 

  12. Jansen, S., A. Collins, C. Yang, G. Rebowski, T. Svitkina, and R. Dominguez. Mechanism of actin filament bundling by fascin. J. Biol. Chem. 286:30087–30096, 2011. https://doi.org/10.1074/jbc.M111.251439.

    Article  Google Scholar 

  13. Jonietz, E. Mechanics: thethe forces of cancer. Nature 491:S56–S57, 2012. https://doi.org/10.1038/491S56a.

    Article  Google Scholar 

  14. Ketene, A. N., P. C. Roberts, A. A. Shea, E. M. Schmelz, and M. Agah. Actin filaments play a primary role for structural integrity and viscoelastic response in cells. Integr. Biol. 4:540–549, 2012. https://doi.org/10.1039/c2ib00168c.

    Article  Google Scholar 

  15. Khakshour, S., M. P. Labrecque, H. Esmaeilsabzali, F. J. S. Lee, M. E. Cox, E. J. Park, and T. V. Beischlag. Retinoblastoma protein (Rb) links hypoxia to altered mechanical properties in cancer cells as measured by an optical tweezer. Sci. Rep. 7:7833, 2017. https://doi.org/10.1038/s41598-017-07947-6.

    Article  Google Scholar 

  16. Kishino, A., and T. Yanagida. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74–76, 1988. https://doi.org/10.1038/334074a0.

    Article  Google Scholar 

  17. Kutscheidt, S., R. Zhu, S. Antoku, G. W. Luxton, I. Stagljar, O. T. Fackler, and G. G. Gundersen. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat. Cell Biol. 16:708–715, 2014. https://doi.org/10.1038/ncb2981.

    Article  Google Scholar 

  18. Kuvendjiska, J., P. Bronsert, V. Martini, S. Lang, M. B. Pitman, J. Hoeppner, and B. Kulemann. Non-metastatic esophageal adenocarcinoma: circulating tumor cells in the course of multimodal tumor treatment. Cancers 11:397, 2019. https://doi.org/10.3390/cancers11030397.

    Article  Google Scholar 

  19. Li, Q. S., G. Y. Lee, C. N. Ong, and C. T. Lim. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374:609–613, 2008. https://doi.org/10.1016/j.bbrc.2008.07.078.

    Article  Google Scholar 

  20. Mohan, R., and A. John. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life 67:395–403, 2015. https://doi.org/10.1002/iub.1384.

    Article  Google Scholar 

  21. Moriya, Y., M. Itoh, S. Okuda, A. C. Yoshizawa, and M. Kanehisa. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35:W182–W185, 2007. https://doi.org/10.1093/nar/gkm321.

    Article  Google Scholar 

  22. Nagayama, K., Y. Nagano, M. Sato, and T. Matsumoto. Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas. J. Biomech. 39:293–301, 2006. https://doi.org/10.1016/j.jbiomech.2004.11.019.

    Article  Google Scholar 

  23. Nakamura, M., D. Ono, and S. Sugita. Mechanophenotyping of B16 melanoma cell variants for the assessment of the efficacy of (−)-epigallocatechin gallate treatment using a tapered microfluidic device. Micromachines 10:207, 2019. https://doi.org/10.3390/mi10030207.

    Article  Google Scholar 

  24. Nakamura, K., N. Yoshikawa, Y. Yamaguchi, S. Kagota, K. Shinozuka, and M. Kunitomo. Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci. 70:791–798, 2002. https://doi.org/10.1016/s0024-3205(01)01454-0.

    Article  Google Scholar 

  25. Nematbakhsh, Y., K. T. Pang, and C. T. Lim. Correlating the viscoelasticity of breast cancer cells with their malignancy. Converg. Sci. Phys. Oncol. 3:2017. https://doi.org/10.1088/2057-1739/aa7ffb.

    Article  Google Scholar 

  26. Ochalek, T., F. J. Nordt, K. Tullberg, and M. N. Burger. Correlation between cell deformability and metastatic potential in b16-f1 melanoma cell variants. Cancer Res. 48:5124–5128, 1988.

    Google Scholar 

  27. Oegema, K., M. S. Savoian, T. J. Mitchison, and C. M. Field. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150:539–552, 2000. https://doi.org/10.1083/jcb.150.3.539.

    Article  Google Scholar 

  28. Ofek, G., D. C. Wiltz, and K. A. Athanasiou. Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J. 97:1873–1882, 2009. https://doi.org/10.1016/j.bpj.2009.07.050.

    Article  Google Scholar 

  29. Oikonomou, K. G., K. Zachou, and G. N. Dalekos. Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun. Rev. 10:389–396, 2011. https://doi.org/10.1016/j.autrev.2010.12.009.

    Article  Google Scholar 

  30. Orr, F. W., H. H. Wang, R. M. Lafrenie, S. Scherbarth, and D. M. Nance. Interactions between cancer cells and the endothelium in metastasis. J. Pathol. 190:310–329, 2000. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3%3c310::AID-PATH525%3e3.0.CO;2-P

  31. Poste, G., J. Doll, I. R. Hart, and I. J. Fidler. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 40:1636–1644, 1980.

    Google Scholar 

  32. Prabhune, M., G. Belge, A. Dotzauer, J. Bullerdiek, and M. Radmacher. Comparison of mechanical properties of normal and malignant thyroid cells. Micron 43:1267–1272, 2012. https://doi.org/10.1016/j.micron.2012.03.023.

    Article  Google Scholar 

  33. Remmerbach, T. W., F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69:1728–1732, 2009. https://doi.org/10.1158/0008-5472.CAN-08-4073.

    Article  Google Scholar 

  34. Sarna, M., A. Zadlo, P. Hermanowicz, Z. Madeja, K. Burda, and T. Sarna. Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells. ExpExp. Dermatol. 23:813–818, 2014. https://doi.org/10.1111/exd.12535.

    Article  Google Scholar 

  35. Sobiepanek, A., M. Milner-Krawczyk, M. Lekka, and T. Kobiela. AFM and QCM-D as tools for the distinction of melanoma cells with a different metastatic potential. Biosens. Bioelectron. 93:274–281, 2017. https://doi.org/10.1016/j.bios.2016.08.088.

    Article  Google Scholar 

  36. Tatara, Y. On compression of rubber elastic sphere over a large range of displacements-part 1: theoretical study. J. Eng. Mater. Technol. 113:285–291, 1991. https://doi.org/10.1115/1.2903407.

    Article  Google Scholar 

  37. Ujihara, Y., H. Miyazaki, and S. Wada. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy. J. Physiol. Sci. 58:499–506, 2008. https://doi.org/10.2170/physiolsci.RP007708.

    Article  Google Scholar 

  38. Ujihara, Y., M. Nakamura, H. Miyazaki, and S. Wada. Proposed spring network cell model based on a minimum energy concept. Ann. Biomed. Eng. 38:1530–1538, 2010. https://doi.org/10.1007/s10439-010-9930-8.

    Article  Google Scholar 

  39. Ujihara, Y., M. Nakamura, H. Miyazaki, and S. Wada. Contribution of actin filaments to the global compressive properties of fibroblasts. J. Mech. Behav. Biomed. Mater. 14:192–198, 2012. https://doi.org/10.1016/j.jmbbm.2012.05.006.

    Article  Google Scholar 

  40. Wang, N. Mechanical interactions among cytoskeletal filaments. Hypertension 32:162–165, 1998. https://doi.org/10.1161/01.HYP.32.1.162.

    Article  Google Scholar 

  41. Watanabe, T., H. Kuramochi, A. Takahashi, K. Imai, N. Katsuta, T. Nakayama, H. Fujiki, and M. Suganuma. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells. J. Cancer Res. Clin. Oncol. 138:859–866, 2012. https://doi.org/10.1007/s00432-012-1159-5.

    Article  Google Scholar 

  42. Welch, M. D., A. H. DePace, S. Verma, A. Iwamatsu, and T. J. Mitchison. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138:375–384, 1997. https://doi.org/10.1083/jcb.138.2.375.

    Article  Google Scholar 

  43. Wolf, K., M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, O. G. Figdor, S. J. Weiss, and P. Friedl. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–1084, 2013. https://doi.org/10.1083/jcb.201210152.

    Article  Google Scholar 

  44. Wu, P. H., D. R. Aroush, A. Asnacios, W. C. Chen, M. E. Dokukin, B. L. Doss, P. Durand-Smet, A. Ekpenyong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee, N. M. Moore, A. Ott, Y. C. Poh, R. Ros, M. Sander, I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, and D. A. Wirtz. Comparison of methods to assess cell mechanical properties. Nat. Methods 15:491–498, 2018. https://doi.org/10.1038/s41592-018-0015-1.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masami Suganuma and Dr. Hiroshi Yoshikawa from Saitama University for providing cell lines. We thank Prof. Hiroshi Miyazaki from Aino University for his technical advice on the compressive test. We thank Reiya Takagi and Takato Goto for their invaluable technical assistance.

Funding

This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [Grant Numbers 17H04740, 18K12055, 19K22962], and the Nitto Foundation and the Foundation of Public Interest of Tatematsu.

Conflict of interest

Yoshihiro Ujihara, Daichi Ono, Koki Nishitsuji, Megumi Ito, Shukei Sugita, and Masanori Nakamura declare that they have no conflicts of interest.

Ethical Approval

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Nakamura.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 34 kb)

Supplementary material 2 (PPTX 711 kb)

Appendix

Appendix

The hyperelastic Tatara model was adopted to describe the mechanical behavior of cells. Here we used the model originally developed by Tatara36 and modified by Hu et al.10 to represent cellular elastic behaviors during the compression test. The hyperelastic Tatara model describes the relationship between the applied force F and compressive strain ε as

$$ F = Eg\left( \varepsilon \right) $$
(A1)

and \( g\left( \varepsilon \right) \) is a function of strain ε given by

$$ g\left( \varepsilon \right) = \left\{ {\frac{{3 \left( {1 - \nu^{2} } \right)A}}{{2 \left( {L_{0} - L_{\text{c}} } \right)}}\left( {1 + \frac{{2Ba^{2} }}{{D_{\text{deform}}^{2} }}} \right)\frac{1}{a} - \frac{2A}{{\pi \left( {L_{0} - L_{\text{c}} } \right)}}\left( {1 + \frac{{4Ba^{2} }}{{5 D_{\text{deform}}^{2} }}} \right)\frac{1}{f\left( a \right)}} \right\}^{ - 1} $$
(A2)

where A and B are the function of strain ε as described below. In Eq. (A2), L0 and Lc are the lengths of the cell before and after compression, respectively. Ddeform is cell deformed diameter (Fig. A1), and ν is a Poisson’s ratio, a is the contact radius, f(a) is the characteristic length of non-spherical geometry after compression, A and B (related to hyperelastic correction) are

Figure A1
figure 8

Geometrical parameters for fitting the hyperelastic Tatara model. L0 and Lc are the lengths of the cell before and after compression, respectively. Ddeform is the cell deformed diameter, and a is the contact radius.

$$ a = \frac{1}{2}\left( {\sqrt {L_{0}^{2} - L_{c}^{2} } + D_{\text{deform}} - L_{0} } \right) $$
(A3)
$$ f\left( a \right) = \left\{ {\frac{{\left( {1 + \nu } \right)L_{0}^{2} }}{{2\left( {a^{2} + L_{0}^{2} } \right)^{3/2} }} + \frac{{1 - \nu^{2} }}{{\left( {a^{2} + L_{0}^{2} } \right)^{1/2} }}} \right\}^{ - 1} $$
(A4)
$$ A = \frac{{\left( {1 - \varepsilon } \right)^{2} }}{{1 - \varepsilon + \frac{{\varepsilon^{2} }}{3}}} $$
(A5)
$$ B = \frac{{1 - \frac{\varepsilon }{3}}}{{1 - \varepsilon + \frac{{\varepsilon^{2} }}{3}}} $$
(A6)

The hyperelastic Tatara model was fitted to the Fε data by the least squared method to obtain Young’s modulus, E, under the assumption of material incompressibility (ν = 0.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujihara, Y., Ono, D., Nishitsuji, K. et al. B16 Melanoma Cancer Cells with Higher Metastatic Potential are More Deformable at a Whole-Cell Level. Cel. Mol. Bioeng. 14, 309–320 (2021). https://doi.org/10.1007/s12195-021-00677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00677-w

Keywords

Navigation